| Be4+ + H0(n=2) → Be3+ + H+ | total |
| Be4+ + H0(n=2) → Be3+(n=3) + H+ | n-resolved |
| Be4+ + H0(n=2) → Be3+(3s) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(3p) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(3d) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(n=4) + H+ | n-resolved |
| Be4+ + H0(n=2) → Be3+(4s) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(4p) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(4d) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(4f) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(n=5) + H+ | n-resolved |
| Be4+ + H0(n=2) → Be3+(5s) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(5p) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(5d) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(5f) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(5g) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(n=6) + H+ | n-resolved |
| Be4+ + H0(n=2) → Be3+(6s) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(6p) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(6d) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(6f) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(6g) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(6h) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(n=7) + H+ | n-resolved |
| Be4+ + H0(n=2) → Be3+(7s) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(7p) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(7d) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(7f) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(7g) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(7h) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(7i) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(n=8) + H+ | n-resolved |
| Be4+ + H0(n=2) → Be3+(8s) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8p) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8d) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8f) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8g) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8h) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8i) + H+ | nl-resolved |
| Be4+ + H0(n=2) → Be3+(8j) + H+ | nl-resolved |
------------------------------------------------------------------------------------------ Data prepared by R. Hoekstra, F. Bliek and H. P. Summers from analysis of CTMC calculations of Olson. . High n behaviour was fitted with the alpha parameter. Smooth alpha behviour at low energy was imposed where CTMC statistics were poor. l-substate cross-sections, for n=8, were obtained by using the n-1 distribution using code adasxx30.fort(adev312) H. P. Summers 20 Sept. 1995 ------------------------------------------------------------------------------------------ Erratic behaviour and omitted l-substates for n=4 a low energy has been modified in the primary data. The data before adjustment is below. 0.01 0.02 0.05 0.1 0 2.0 5.0 / energies (keV.amu) 18.0 18.0 17.81 17.4 5 10.0 6.4 / alpha 2.70E-14 2.72E-14 2.75E-14 2.79E-14 4 3.06E-14 3.04E-14 / total n l m / partial cross sections 4 9.01E-19 3.60E-18 2.70E-18 7.21E-18 6 4.33E-16 6.81E-16 4 0 0.00E+00 0.00E+00 0.00E+00 9.01E-19 8 3.80E-17 5.92E-17 4 1 0.00E+00 0.00E+00 0.00E+00 9.01E-19 7 1.07E-16 1.28E-16 4 2 0.00E+00 0.00E+00 0.00E+00 1.80E-18 7 1.47E-16 1.93E-16 4 3 0.00E+00 0.00E+00 0.00E+00 3.60E-18 7 1.40E-16 3.02E-16 H. P. Summers 2 Oct. 1995 ------------------------------------------------------------------------------------------ --------------------------------------------------------------------------------- ---------------------------------------------------------------------------------