arf40_ic#w62.dat
Resolved Specific Ion Data Collections
- Ion
- W62+
- Temperature Range
- 68.42 eV → 1.025 x 105 eV
ADF04
- Filename
- arf40_ic#w62.dat
- Full Path
- adf04/coparf#74/arf40_ic#w62.dat
Download data
- Spontaneous Emission: W+62(i) → W+62(j) + hv
- Electron Impact Excitation: W+62(i) + e → W+62(j) + e
| 24 1S0.0 | 0.0 cm-1 |
| 14515 3P0.0 | 1138090.0 cm-1 |
| 14515 3P1.0 | 1258970.0 cm-1 |
| 14515 3P2.0 | 4115670.0 cm-1 |
| 14515 1P1.0 | 4390950.0 cm-1 |
| 14516 3D1.0 | 5784560.0 cm-1 |
| 14516 3D2.0 | 5836630.0 cm-1 |
| 14516 3D3.0 | 6463060.0 cm-1 |
| 14516 1D2.0 | 6559700.0 cm-1 |
| 14517 3S1.0 | 25812500.0 cm-1 |
| 14517 1S0.0 | 25911700.0 cm-1 |
| 14518 3P0.0 | 26403900.0 cm-1 |
| 14518 3P1.0 | 26416100.0 cm-1 |
| 14518 3P2.0 | 27618300.0 cm-1 |
| 14518 1P1.0 | 27643400.0 cm-1 |
| 14519 3D1.0 | 28225900.0 cm-1 |
| 14519 3D2.0 | 28235200.0 cm-1 |
| 14519 3D3.0 | 28511800.0 cm-1 |
| 14519 1D2.0 | 28527100.0 cm-1 |
| 1451b 3S1.0 | 37295700.0 cm-1 |
| 1451b 1S0.0 | 37330000.0 cm-1 |
| 1451c 3P0.0 | 37585800.0 cm-1 |
| 1451c 3P1.0 | 37590300.0 cm-1 |
| 1451c 3P2.0 | 38196200.0 cm-1 |
| 1451c 1P1.0 | 38205300.0 cm-1 |
| 1451d 3D1.0 | 38492900.0 cm-1 |
| 1451d 3D2.0 | 38497200.0 cm-1 |
| 1451d 3D3.0 | 38639100.0 cm-1 |
| 1451d 1D2.0 | 38646200.0 cm-1 |
| 1451g 3S1.0 | 43355500.0 cm-1 |
| 1451g 1S0.0 | 43372100.0 cm-1 |
| 1451h 3P0.0 | 43518600.0 cm-1 |
| 1451h 3P1.0 | 43520800.0 cm-1 |
| 1451h 3P2.0 | 43867300.0 cm-1 |
| 1451h 1P1.0 | 43871800.0 cm-1 |
| 1451i 3D1.0 | 44034800.0 cm-1 |
| 1451i 3D2.0 | 44037200.0 cm-1 |
| 1451i 3D3.0 | 44119300.0 cm-1 |
| 1451i 1D2.0 | 44123200.0 cm-1 |
| 22553524515 3S1.0 | 67248900.0 cm-1 |
| 22553524515 3D2.0 | 67272500.0 cm-1 |
| 22553524515 3D3.0 | 70261000.0 cm-1 |
| 22553524515 1P1.0 | 70261800.0 cm-1 |
| 22553524515 3P2.0 | 70335000.0 cm-1 |
| 22553524515 1S0.0 | 70690000.0 cm-1 |
| 22553524516 3P0.0 | 71772000.0 cm-1 |
| 22553524516 3P1.0 | 71855900.0 cm-1 |
| 22553524516 3F3.0 | 71876100.0 cm-1 |
| 22553524516 3D2.0 | 71908800.0 cm-1 |
| 22553524516 3F4.0 | 72537900.0 cm-1 |
| 22553524516 1D2.0 | 72572000.0 cm-1 |
| 22553524516 3D3.0 | 72639500.0 cm-1 |
| 22553524516 1P1.0 | 72839500.0 cm-1 |
| 22553524515 3D1.0 | 78443300.0 cm-1 |
| 22553524515 3P0.0 | 78695400.0 cm-1 |
| 22553524515 3P1.0 | 81467700.0 cm-1 |
| 22553524515 1D2.0 | 81489100.0 cm-1 |
| 12563524515 3P0.0 | 82668300.0 cm-1 |
| 12563524515 3P1.0 | 82684700.0 cm-1 |
| 22553524516 3F2.0 | 83053800.0 cm-1 |
| 22553524516 3D1.0 | 83245300.0 cm-1 |
| 22553524516 3P2.0 | 83756000.0 cm-1 |
| 22553524516 1F3.0 | 83786800.0 cm-1 |
| 12563524515 3P2.0 | 85687100.0 cm-1 |
| 12563524515 1P1.0 | 85730700.0 cm-1 |
| 12563524516 3D1.0 | 87255600.0 cm-1 |
| 12563524516 3D2.0 | 87307400.0 cm-1 |
| 12563524516 3D3.0 | 87957400.0 cm-1 |
| 12563524516 1D2.0 | 88053000.0 cm-1 |
| 22553524518 3S1.0 | 92778000.0 cm-1 |
| 22553524518 3D2.0 | 92786200.0 cm-1 |
| 22553524518 3D3.0 | 93999100.0 cm-1 |
| 22553524518 1P1.0 | 93999300.0 cm-1 |
| 22553524518 3P2.0 | 94025500.0 cm-1 |
| 22553524518 1S0.0 | 94132300.0 cm-1 |
| 22553524519 3P0.0 | 94563800.0 cm-1 |
| 22553524519 3P1.0 | 94593600.0 cm-1 |
| 22553524519 3F3.0 | 94599800.0 cm-1 |
| 22553524519 3D2.0 | 94611200.0 cm-1 |
| 22553524519 3F4.0 | 94878400.0 cm-1 |
| 22553524519 1D2.0 | 94890400.0 cm-1 |
| 22553524519 3D3.0 | 94913600.0 cm-1 |
| 22553524519 1P1.0 | 94979200.0 cm-1 |
| 2255352451a 3D1.0 | 95312400.0 cm-1 |
| 2255352451a 3G4.0 | 95323300.0 cm-1 |
| 2255352451a 3F2.0 | 95330400.0 cm-1 |
| 2255352451a 3F3.0 | 95339000.0 cm-1 |
| 2255352451a 3G5.0 | 95444500.0 cm-1 |
| 2255352451a 1D2.0 | 95448200.0 cm-1 |
| 2255352451a 1F3.0 | 95455900.0 cm-1 |
| 2255352451a 3F4.0 | 95463900.0 cm-1 |
| 22553524518 3D1.0 | 103987000.0 cm-1 |
| 2255352451c 3S1.0 | 104028000.0 cm-1 |
| 2255352451c 3D2.0 | 104032000.0 cm-1 |
| 22553524518 3P0.0 | 104062000.0 cm-1 |
| 2255352451c 1P1.0 | 104641000.0 cm-1 |
| 2255352451c 3D3.0 | 104641000.0 cm-1 |
| 2255352451c 3P2.0 | 104654000.0 cm-1 |
| 2255352451c 1S0.0 | 104703000.0 cm-1 |
| 2255352451d 3P0.0 | 104919000.0 cm-1 |
| 2255352451d 3P1.0 | 104933000.0 cm-1 |
| 2255352451d 3F3.0 | 104936000.0 cm-1 |
| 2255352451d 3D2.0 | 104941000.0 cm-1 |
| 2255352451d 3F4.0 | 105078000.0 cm-1 |
| 2255352451d 1D2.0 | 105084000.0 cm-1 |
| 2255352451d 3D3.0 | 105095000.0 cm-1 |
| 2255352451d 1P1.0 | 105124000.0 cm-1 |
| 22553524518 3P1.0 | 105212000.0 cm-1 |
| 22553524518 1D2.0 | 105219000.0 cm-1 |
| 2255352451e 3D1.0 | 105286000.0 cm-1 |
| 2255352451e 3G4.0 | 105292000.0 cm-1 |
| 2255352451e 3F2.0 | 105295000.0 cm-1 |
| 2255352451e 3F3.0 | 105299000.0 cm-1 |
| 2255352451e 3G5.0 | 105354000.0 cm-1 |
| 2255352451e 1D2.0 | 105357000.0 cm-1 |
| 2255352451e 1F3.0 | 105359000.0 cm-1 |
| 2255352451e 3F4.0 | 105363000.0 cm-1 |
| 22553524519 3F2.0 | 105803000.0 cm-1 |
| 22553524519 3D1.0 | 105866000.0 cm-1 |
| 22553524519 3P2.0 | 106096000.0 cm-1 |
| 22553524519 1F3.0 | 106107000.0 cm-1 |
| 2255352451a 3G3.0 | 106544000.0 cm-1 |
| 2255352451a 3D2.0 | 106550000.0 cm-1 |
| 2255352451a 3D3.0 | 106668000.0 cm-1 |
| 2255352451a 1G4.0 | 106669000.0 cm-1 |
| 12563524517 3S1.0 | 107602000.0 cm-1 |
| 12563524517 1S0.0 | 107663000.0 cm-1 |
| 12563524518 3P0.0 | 108177000.0 cm-1 |
| 12563524518 3P1.0 | 108184000.0 cm-1 |
| 12563524518 3P2.0 | 109400000.0 cm-1 |
| 12563524518 1P1.0 | 109415000.0 cm-1 |
| 12563524519 3D1.0 | 109987000.0 cm-1 |
| 12563524519 3D2.0 | 110004000.0 cm-1 |
| 12563524519 3D3.0 | 110279000.0 cm-1 |
| 12563524519 1D2.0 | 110310000.0 cm-1 |
| 2255352451c 3D1.0 | 115242000.0 cm-1 |
| 2255352451c 3P0.0 | 115277000.0 cm-1 |
| 2255352451c 3P1.0 | 115857000.0 cm-1 |
| 2255352451c 1D2.0 | 115860000.0 cm-1 |
| 2255352451d 3F2.0 | 116147000.0 cm-1 |
| 2255352451d 3D1.0 | 116175000.0 cm-1 |
| 2255352451d 3P2.0 | 116296000.0 cm-1 |
| 2255352451d 1F3.0 | 116301000.0 cm-1 |
| 2255352451e 3G3.0 | 116510000.0 cm-1 |
| 2255352451e 3D2.0 | 116514000.0 cm-1 |
| 2255352451e 3D3.0 | 116574000.0 cm-1 |
| 2255352451e 1G4.0 | 116575000.0 cm-1 |
| 1256352451b 3S1.0 | 119139000.0 cm-1 |
| 1256352451b 1S0.0 | 119167000.0 cm-1 |
| 1256352451c 3P0.0 | 119421000.0 cm-1 |
| 1256352451c 3P1.0 | 119425000.0 cm-1 |
| 1256352451c 3P2.0 | 120035000.0 cm-1 |
| 1256352451c 1P1.0 | 120042000.0 cm-1 |
| 1256352451d 3D1.0 | 120323000.0 cm-1 |
| 1256352451d 3D2.0 | 120331000.0 cm-1 |
| 1256352451d 3D3.0 | 120472000.0 cm-1 |
| 1256352451d 1D2.0 | 120486000.0 cm-1 |
Contributors
- Adam Foster
- Martin O'Mullane
-------------------------------------------------------------------------------- Configuration Eissner == Standard R % Parentage 1 24 == 3S2 100 1 1S 1S/ 2 14515 == 3S1 3P1 100 1 2S 2S/ 1 2P 3P/ 3 14515 == 3S1 3P1 72 1 2S 2S/ 1 2P 3P/ 4 14515 == 3S1 3P1 100 1 2S 2S/ 1 2P 3P/ 5 14515 == 3S1 3P1 72 1 2S 2S/ 1 2P 1P/ 6 14516 == 3S1 3D1 100 1 2S 2S/ 1 2D 3D/ 7 14516 == 3S1 3D1 70 1 2S 2S/ 1 2D 3D/ 8 14516 == 3S1 3D1 100 1 2S 2S/ 1 2D 3D/ 9 14516 == 3S1 3D1 70 1 2S 2S/ 1 2D 1D/ 10 14517 == 3S1 4S1 100 1 2S 2S/ 1 2S 3S/ 11 14517 == 3S1 4S1 100 1 2S 2S/ 1 2S 1S/ 12 14518 == 3S1 4P1 100 1 2S 2S/ 1 2P 3P/ 13 14518 == 3S1 4P1 68 1 2S 2S/ 1 2P 3P/ 14 14518 == 3S1 4P1 100 1 2S 2S/ 1 2P 3P/ 15 14518 == 3S1 4P1 68 1 2S 2S/ 1 2P 1P/ 16 14519 == 3S1 4D1 100 1 2S 2S/ 1 2D 3D/ 17 14519 == 3S1 4D1 64 1 2S 2S/ 1 2D 3D/ 18 14519 == 3S1 4D1 100 1 2S 2S/ 1 2D 3D/ 19 14519 == 3S1 4D1 64 1 2S 2S/ 1 2D 1D/ 20 1451B == 3S1 5S1 100 1 2S 2S/ 1 2S 3S/ 21 1451B == 3S1 5S1 100 1 2S 2S/ 1 2S 1S/ 22 1451C == 3S1 5P1 100 1 2S 2S/ 1 2P 3P/ 23 1451C == 3S1 5P1 68 1 2S 2S/ 1 2P 3P/ 24 1451C == 3S1 5P1 100 1 2S 2S/ 1 2P 3P/ 25 1451C == 3S1 5P1 68 1 2S 2S/ 1 2P 1P/ 26 1451D == 3S1 5D1 100 1 2S 2S/ 1 2D 3D/ 27 1451D == 3S1 5D1 64 1 2S 2S/ 1 2D 3D/ 28 1451D == 3S1 5D1 100 1 2S 2S/ 1 2D 3D/ 29 1451D == 3S1 5D1 64 1 2S 2S/ 1 2D 1D/ 30 1451G == 3S1 6S1 100 1 2S 2S/ 1 2S 3S/ 31 1451G == 3S1 6S1 100 1 2S 2S/ 1 2S 1S/ 32 1451H == 3S1 6P1 100 1 2S 2S/ 1 2P 3P/ 33 1451H == 3S1 6P1 68 1 2S 2S/ 1 2P 3P/ 34 1451H == 3S1 6P1 100 1 2S 2S/ 1 2P 3P/ 35 1451H == 3S1 6P1 68 1 2S 2S/ 1 2P 1P/ 36 1451I == 3S1 6D1 100 1 2S 2S/ 1 2D 3D/ 37 1451I == 3S1 6D1 63 1 2S 2S/ 1 2D 3D/ 38 1451I == 3S1 6D1 100 1 2S 2S/ 1 2D 3D/ 39 1451I == 3S1 6D1 63 1 2S 2S/ 1 2D 1D/ 40 22553524515 == 2S2 2P5 3S2 3P1 * 31 1 2P 2P/ 1 2P 3S/ 41 22553524515 == 2S2 2P5 3S2 3P1 50 1 2P 2P/ 1 2P 3D/ 42 22553524515 == 2S2 2P5 3S2 3P1 100 1 2P 2P/ 1 2P 3D/ 43 22553524515 == 2S2 2P5 3S2 3P1 56 1 2P 2P/ 1 2P 1P/ 44 22553524515 == 2S2 2P5 3S2 3P1 67 1 2P 2P/ 1 2P 3P/ 45 22553524515 == 2S2 2P5 3S2 3P1 64 1 2P 2P/ 1 2P 1S/ 46 22553524516 == 2S2 2P5 3S2 3D1 100 1 2P 2P/ 1 2D 3P/ 47 22553524516 == 2S2 2P5 3S2 3D1 65 1 2P 2P/ 1 2D 3P/ 48 22553524516 == 2S2 2P5 3S2 3D1 54 1 2P 2P/ 1 2D 3F/ 49 22553524516 == 2S2 2P5 3S2 3D1 54 1 2P 2P/ 1 2D 3D/ 50 22553524516 == 2S2 2P5 3S2 3D1 100 1 2P 2P/ 1 2D 3F/ 51 22553524516 == 2S2 2P5 3S2 3D1 48 1 2P 2P/ 1 2D 1D/ 52 22553524516 == 2S2 2P5 3S2 3D1 71 1 2P 2P/ 1 2D 3D/ 53 22553524516 == 2S2 2P5 3S2 3D1 63 1 2P 2P/ 1 2D 1P/ 54 22553524515 == 2S2 2P5 3S2 3P1 74 1 2P 2P/ 1 2P 3D/ 55 22553524515 == 2S2 2P5 3S2 3P1 64 1 2P 2P/ 1 2P 3P/ 56 22553524515 == 2S2 2P5 3S2 3P1 50 1 2P 2P/ 1 2P 3P/ 57 22553524515 == 2S2 2P5 3S2 3P1 * 33 1 2P 2P/ 1 2P 1D/ 58 12563524515 == 2S1 2P6 3S2 3P1 100 1 2S 2S/ 1 2P 3P/ 59 12563524515 == 2S1 2P6 3S2 3P1 67 1 2S 2S/ 1 2P 3P/ 60 22553524516 == 2S2 2P5 3S2 3D1 74 1 2P 2P/ 1 2D 3F/ 61 22553524516 == 2S2 2P5 3S2 3D1 49 1 2P 2P/ 1 2D 3D/ 62 22553524516 == 2S2 2P5 3S2 3D1 47 1 2P 2P/ 1 2D 3P/ 63 22553524516 == 2S2 2P5 3S2 3D1 * 34 1 2P 2P/ 1 2D 1F/ 64 12563524515 == 2S1 2P6 3S2 3P1 100 1 2S 2S/ 1 2P 3P/ 65 12563524515 == 2S1 2P6 3S2 3P1 68 1 2S 2S/ 1 2P 1P/ 66 12563524516 == 2S1 2P6 3S2 3D1 100 1 2S 2S/ 1 2D 3D/ 67 12563524516 == 2S1 2P6 3S2 3D1 69 1 2S 2S/ 1 2D 3D/ 68 12563524516 == 2S1 2P6 3S2 3D1 100 1 2S 2S/ 1 2D 3D/ 69 12563524516 == 2S1 2P6 3S2 3D1 69 1 2S 2S/ 1 2D 1D/ 70 22553524518 == 2S2 2P5 3S2 4P1 * 31 1 2P 2P/ 1 2P 3S/ 71 22553524518 == 2S2 2P5 3S2 4P1 50 1 2P 2P/ 1 2P 3D/ 72 22553524518 == 2S2 2P5 3S2 4P1 100 1 2P 2P/ 1 2P 3D/ 73 22553524518 == 2S2 2P5 3S2 4P1 56 1 2P 2P/ 1 2P 1P/ 74 22553524518 == 2S2 2P5 3S2 4P1 67 1 2P 2P/ 1 2P 3P/ 75 22553524518 == 2S2 2P5 3S2 4P1 66 1 2P 2P/ 1 2P 1S/ 76 22553524519 == 2S2 2P5 3S2 4D1 100 1 2P 2P/ 1 2D 3P/ 77 22553524519 == 2S2 2P5 3S2 4D1 63 1 2P 2P/ 1 2D 3P/ 78 22553524519 == 2S2 2P5 3S2 4D1 54 1 2P 2P/ 1 2D 3F/ 79 22553524519 == 2S2 2P5 3S2 4D1 54 1 2P 2P/ 1 2D 3D/ 80 22553524519 == 2S2 2P5 3S2 4D1 100 1 2P 2P/ 1 2D 3F/ 81 22553524519 == 2S2 2P5 3S2 4D1 48 1 2P 2P/ 1 2D 1D/ 82 22553524519 == 2S2 2P5 3S2 4D1 71 1 2P 2P/ 1 2D 3D/ 83 22553524519 == 2S2 2P5 3S2 4D1 64 1 2P 2P/ 1 2D 1P/ 84 2255352451A == 2S2 2P5 3S2 4F1 100 1 2P 2P/ 1 2F 3D/ 85 2255352451A == 2S2 2P5 3S2 4F1 53 1 2P 2P/ 1 2F 3G/ 86 2255352451A == 2S2 2P5 3S2 4F1 48 1 2P 2P/ 1 2F 3F/ 87 2255352451A == 2S2 2P5 3S2 4F1 51 1 2P 2P/ 1 2F 3F/ 88 2255352451A == 2S2 2P5 3S2 4F1 100 1 2P 2P/ 1 2F 3G/ 89 2255352451A == 2S2 2P5 3S2 4F1 60 1 2P 2P/ 1 2F 1D/ 90 2255352451A == 2S2 2P5 3S2 4F1 44 1 2P 2P/ 1 2F 1F/ 91 2255352451A == 2S2 2P5 3S2 4F1 72 1 2P 2P/ 1 2F 3F/ 92 22553524518 == 2S2 2P5 3S2 4P1 74 1 2P 2P/ 1 2P 3D/ 93 2255352451C == 2S2 2P5 3S2 5P1 * 31 1 2P 2P/ 1 2P 3S/ 94 2255352451C == 2S2 2P5 3S2 5P1 50 1 2P 2P/ 1 2P 3D/ 95 22553524518 == 2S2 2P5 3S2 4P1 66 1 2P 2P/ 1 2P 3P/ 96 2255352451C == 2S2 2P5 3S2 5P1 56 1 2P 2P/ 1 2P 1P/ 97 2255352451C == 2S2 2P5 3S2 5P1 100 1 2P 2P/ 1 2P 3D/ 98 2255352451C == 2S2 2P5 3S2 5P1 67 1 2P 2P/ 1 2P 3P/ 99 2255352451C == 2S2 2P5 3S2 5P1 66 1 2P 2P/ 1 2P 1S/ 100 2255352451D == 2S2 2P5 3S2 5D1 100 1 2P 2P/ 1 2D 3P/ 101 2255352451D == 2S2 2P5 3S2 5D1 62 1 2P 2P/ 1 2D 3P/ 102 2255352451D == 2S2 2P5 3S2 5D1 54 1 2P 2P/ 1 2D 3F/ 103 2255352451D == 2S2 2P5 3S2 5D1 54 1 2P 2P/ 1 2D 3D/ 104 2255352451D == 2S2 2P5 3S2 5D1 100 1 2P 2P/ 1 2D 3F/ 105 2255352451D == 2S2 2P5 3S2 5D1 48 1 2P 2P/ 1 2D 1D/ 106 2255352451D == 2S2 2P5 3S2 5D1 71 1 2P 2P/ 1 2D 3D/ 107 2255352451D == 2S2 2P5 3S2 5D1 64 1 2P 2P/ 1 2D 1P/ 108 22553524518 == 2S2 2P5 3S2 4P1 50 1 2P 2P/ 1 2P 3P/ 109 22553524518 == 2S2 2P5 3S2 4P1 * 33 1 2P 2P/ 1 2P 1D/ 110 2255352451E == 2S2 2P5 3S2 5F1 100 1 2P 2P/ 1 2F 3D/ 111 2255352451E == 2S2 2P5 3S2 5F1 53 1 2P 2P/ 1 2F 3G/ 112 2255352451E == 2S2 2P5 3S2 5F1 48 1 2P 2P/ 1 2F 3F/ 113 2255352451E == 2S2 2P5 3S2 5F1 51 1 2P 2P/ 1 2F 3F/ 114 2255352451E == 2S2 2P5 3S2 5F1 100 1 2P 2P/ 1 2F 3G/ 115 2255352451E == 2S2 2P5 3S2 5F1 61 1 2P 2P/ 1 2F 1D/ 116 2255352451E == 2S2 2P5 3S2 5F1 44 1 2P 2P/ 1 2F 1F/ 117 2255352451E == 2S2 2P5 3S2 5F1 72 1 2P 2P/ 1 2F 3F/ 118 22553524519 == 2S2 2P5 3S2 4D1 75 1 2P 2P/ 1 2D 3F/ 119 22553524519 == 2S2 2P5 3S2 4D1 50 1 2P 2P/ 1 2D 3D/ 120 22553524519 == 2S2 2P5 3S2 4D1 48 1 2P 2P/ 1 2D 3P/ 121 22553524519 == 2S2 2P5 3S2 4D1 * 33 1 2P 2P/ 1 2D 1F/ 122 2255352451A == 2S2 2P5 3S2 4F1 73 1 2P 2P/ 1 2F 3G/ 123 2255352451A == 2S2 2P5 3S2 4F1 22 1 2P 2P/ 1 2F 3D/ 124 2255352451A == 2S2 2P5 3S2 4F1 54 1 2P 2P/ 1 2F 3D/ 125 2255352451A == 2S2 2P5 3S2 4F1 * 33 1 2P 2P/ 1 2F 1G/ 126 12563524517 == 2S1 2P6 3S2 4S1 100 1 2S 2S/ 1 2S 3S/ 127 12563524517 == 2S1 2P6 3S2 4S1 100 1 2S 2S/ 1 2S 1S/ 128 12563524518 == 2S1 2P6 3S2 4P1 100 1 2S 2S/ 1 2P 3P/ 129 12563524518 == 2S1 2P6 3S2 4P1 67 1 2S 2S/ 1 2P 3P/ 130 12563524518 == 2S1 2P6 3S2 4P1 100 1 2S 2S/ 1 2P 3P/ 131 12563524518 == 2S1 2P6 3S2 4P1 67 1 2S 2S/ 1 2P 1P/ 132 12563524519 == 2S1 2P6 3S2 4D1 100 1 2S 2S/ 1 2D 3D/ 133 12563524519 == 2S1 2P6 3S2 4D1 67 1 2S 2S/ 1 2D 3D/ 134 12563524519 == 2S1 2P6 3S2 4D1 100 1 2S 2S/ 1 2D 3D/ 135 12563524519 == 2S1 2P6 3S2 4D1 67 1 2S 2S/ 1 2D 1D/ 136 2255352451C == 2S2 2P5 3S2 5P1 74 1 2P 2P/ 1 2P 3D/ 137 2255352451C == 2S2 2P5 3S2 5P1 66 1 2P 2P/ 1 2P 3P/ 138 2255352451C == 2S2 2P5 3S2 5P1 50 1 2P 2P/ 1 2P 3P/ 139 2255352451C == 2S2 2P5 3S2 5P1 * 33 1 2P 2P/ 1 2P 1D/ 140 2255352451D == 2S2 2P5 3S2 5D1 75 1 2P 2P/ 1 2D 3F/ 141 2255352451D == 2S2 2P5 3S2 5D1 50 1 2P 2P/ 1 2D 3D/ 142 2255352451D == 2S2 2P5 3S2 5D1 48 1 2P 2P/ 1 2D 3P/ 143 2255352451D == 2S2 2P5 3S2 5D1 * 33 1 2P 2P/ 1 2D 1F/ 144 2255352451E == 2S2 2P5 3S2 5F1 73 1 2P 2P/ 1 2F 3G/ 145 2255352451E == 2S2 2P5 3S2 5F1 22 1 2P 2P/ 1 2F 3D/ 146 2255352451E == 2S2 2P5 3S2 5F1 54 1 2P 2P/ 1 2F 3D/ 147 2255352451E == 2S2 2P5 3S2 5F1 * 33 1 2P 2P/ 1 2F 1G/ 148 1256352451B == 2S1 2P6 3S2 5S1 100 1 2S 2S/ 1 2S 3S/ 149 1256352451B == 2S1 2P6 3S2 5S1 100 1 2S 2S/ 1 2S 1S/ 150 1256352451C == 2S1 2P6 3S2 5P1 100 1 2S 2S/ 1 2P 3P/ 151 1256352451C == 2S1 2P6 3S2 5P1 67 1 2S 2S/ 1 2P 3P/ 152 1256352451C == 2S1 2P6 3S2 5P1 100 1 2S 2S/ 1 2P 3P/ 153 1256352451C == 2S1 2P6 3S2 5P1 67 1 2S 2S/ 1 2P 1P/ 154 1256352451D == 2S1 2P6 3S2 5D1 100 1 2S 2S/ 1 2D 3D/ 155 1256352451D == 2S1 2P6 3S2 5D1 67 1 2S 2S/ 1 2D 3D/ 156 1256352451D == 2S1 2P6 3S2 5D1 100 1 2S 2S/ 1 2D 3D/ 157 1256352451D == 2S1 2P6 3S2 5D1 67 1 2S 2S/ 1 2D 1D/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#adf34_tungsten_w62.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level IC YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 3387 1597 3743 initially 3387 1597 3743 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Adam Foster Date : 15/05/09 -------------------------------------------------------------------------------- Correct the orbital energy line to insert 0.0 for orbitals not present in the set of configurations. Martin O'Mullane 29-11-2011 -------------------------------------------------------------------------------