arf40_ls#w44.dat
Resolved Specific Ion Data Collections
- Ion
- W44+
- Temperature Range
- 34.90 eV → 5.239 x 104 eV
ADF04
- Filename
- arf40_ls#w44.dat
- Full Path
- adf04/coparf#74/arf40_ls#w44.dat
Download data
- Spontaneous Emission: W+44(i) → W+44(j) + hv
- Electron Impact Excitation: W+44(i) + e → W+44(j) + e
| 606527 1S0.0 | 0.0 cm-1 |
| 606517518 3P4.0 | 1160770.0 cm-1 |
| 606517518 1P1.0 | 1629670.0 cm-1 |
| 606517519 3D7.0 | 2857170.0 cm-1 |
| 606517519 1D2.0 | 2997070.0 cm-1 |
| 60651751a 3F10.0 | 4307370.0 cm-1 |
| 60651751a 1F3.0 | 4361670.0 cm-1 |
| 60651751b 3S1.0 | 7634770.0 cm-1 |
| 60651751b 1S0.0 | 7681170.0 cm-1 |
| 60651751c 3P4.0 | 8243870.0 cm-1 |
| 60651751c 1P1.0 | 8419570.0 cm-1 |
| 60651751d 3D7.0 | 9030370.0 cm-1 |
| 60651751d 1D2.0 | 9078370.0 cm-1 |
| 60651751g 3S1.0 | 11445300.0 cm-1 |
| 60651751g 1S0.0 | 11461300.0 cm-1 |
| 60651751h 3P4.0 | 11778300.0 cm-1 |
| 60651751h 1P1.0 | 11872300.0 cm-1 |
| 60651751i 3D7.0 | 12211300.0 cm-1 |
| 60651751i 1D2.0 | 12237300.0 cm-1 |
| 96527519 3S1.0 | 15140300.0 cm-1 |
| 96527519 1F3.0 | 15192300.0 cm-1 |
| 96527519 1P1.0 | 15320300.0 cm-1 |
| 96527519 3D7.0 | 15361300.0 cm-1 |
| 96527519 1D2.0 | 15361300.0 cm-1 |
| 96527519 3G13.0 | 15368300.0 cm-1 |
| 96527519 3F10.0 | 15623300.0 cm-1 |
| 96527519 3P4.0 | 15814300.0 cm-1 |
| 96527519 1G4.0 | 15858300.0 cm-1 |
| 96527519 1S0.0 | 15973300.0 cm-1 |
| 9652751a 1D2.0 | 16710300.0 cm-1 |
| 24555606527518 3S1.0 | 16735300.0 cm-1 |
| 9652751a 1F3.0 | 16752300.0 cm-1 |
| 9652751a 3H16.0 | 16820300.0 cm-1 |
| 9652751a 3F10.0 | 16831300.0 cm-1 |
| 9652751a 3G13.0 | 16856300.0 cm-1 |
| 9652751a 3P4.0 | 16957300.0 cm-1 |
| 9652751a 3D7.0 | 16979300.0 cm-1 |
| 9652751a 1H5.0 | 17236300.0 cm-1 |
| 9652751a 1G4.0 | 17267300.0 cm-1 |
| 9652751a 1P1.0 | 17367300.0 cm-1 |
| 24555606527518 1P1.0 | 17536300.0 cm-1 |
| 24555606527518 3D7.0 | 17603300.0 cm-1 |
| 24555606527518 1S0.0 | 17679300.0 cm-1 |
| 24555606527518 3P4.0 | 18571300.0 cm-1 |
| 24555606527519 1D2.0 | 18984300.0 cm-1 |
| 24555606527519 1P1.0 | 18989300.0 cm-1 |
| 24555606527519 3D7.0 | 19403300.0 cm-1 |
| 24555606527519 3F10.0 | 19464300.0 cm-1 |
| 24555606527518 1D2.0 | 20011300.0 cm-1 |
| 24555606527519 3P4.0 | 20266300.0 cm-1 |
| 2455560652751a 1F3.0 | 20363300.0 cm-1 |
| 2455560652751a 1D2.0 | 20409300.0 cm-1 |
| 2455560652751a 3F10.0 | 20943300.0 cm-1 |
| 2455560652751a 3G13.0 | 20955300.0 cm-1 |
| 24555606527519 1F3.0 | 21445300.0 cm-1 |
| 9652751d 3S1.0 | 21455300.0 cm-1 |
| 2455560652751a 3D7.0 | 21463300.0 cm-1 |
| 9652751d 1F3.0 | 21476300.0 cm-1 |
| 9652751d 1P1.0 | 21539300.0 cm-1 |
| 9652751d 1D2.0 | 21556300.0 cm-1 |
| 9652751d 3D7.0 | 21612300.0 cm-1 |
| 9652751d 3G13.0 | 21631300.0 cm-1 |
| 9652751d 3F10.0 | 21836300.0 cm-1 |
| 9652751d 3P4.0 | 22016300.0 cm-1 |
| 9652751d 1S0.0 | 22056300.0 cm-1 |
| 9652751d 1G4.0 | 22066300.0 cm-1 |
| 9652751e 1D2.0 | 22156300.0 cm-1 |
| 9652751e 1F3.0 | 22174300.0 cm-1 |
| 9652751e 3F10.0 | 22276300.0 cm-1 |
| 9652751e 3H16.0 | 22282300.0 cm-1 |
| 9652751e 3G13.0 | 22293300.0 cm-1 |
| 9652751e 3D7.0 | 22411300.0 cm-1 |
| 9652751e 3P4.0 | 22425300.0 cm-1 |
| 9652751f 1D2.0 | 22515300.0 cm-1 |
| 9652751f 1F3.0 | 22515300.0 cm-1 |
| 9652751f 1G4.0 | 22521300.0 cm-1 |
| 9652751f 3G13.0 | 22651300.0 cm-1 |
| 9652751f 3I19.0 | 22652300.0 cm-1 |
| 9652751f 3H16.0 | 22659300.0 cm-1 |
| 9652751e 1H5.0 | 22679300.0 cm-1 |
| 9652751e 1G4.0 | 22691300.0 cm-1 |
| 9652751e 1P1.0 | 22711300.0 cm-1 |
| 9652751f 3D7.0 | 22749300.0 cm-1 |
| 2455560652751a 1G4.0 | 22822300.0 cm-1 |
| 9652751f 3F10.0 | 22861300.0 cm-1 |
| 9652751f 1I6.0 | 23033300.0 cm-1 |
| 9652751f 1H5.0 | 23043300.0 cm-1 |
| 2455560652751c 3S1.0 | 24141300.0 cm-1 |
| 2455560652751c 1P1.0 | 24511300.0 cm-1 |
| 2455560652751c 1S0.0 | 24558300.0 cm-1 |
| 9652751i 1F3.0 | 24694300.0 cm-1 |
| 9652751i 1P1.0 | 24730300.0 cm-1 |
| 9652751i 1D2.0 | 24739300.0 cm-1 |
| 9652751i 1S0.0 | 24775300.0 cm-1 |
| 2455560652751c 3D7.0 | 24808300.0 cm-1 |
| 9652751i 3D7.0 | 24816300.0 cm-1 |
| 9652751i 3G13.0 | 24841300.0 cm-1 |
| 9652751i 3F10.0 | 25026300.0 cm-1 |
| 9652751i 3P4.0 | 25063300.0 cm-1 |
| 9652751j 1D2.0 | 25064300.0 cm-1 |
| 9652751j 1F3.0 | 25074300.0 cm-1 |
| 9652751j 1P1.0 | 25102300.0 cm-1 |
| 2455560652751d 1D2.0 | 25179300.0 cm-1 |
| 2455560652751d 1P1.0 | 25180300.0 cm-1 |
| 9652751j 3F10.0 | 25185300.0 cm-1 |
| 9652751j 3H16.0 | 25197300.0 cm-1 |
| 9652751j 3G13.0 | 25199300.0 cm-1 |
| 9652751i 3S1.0 | 25249300.0 cm-1 |
| 9652751i 1G4.0 | 25253300.0 cm-1 |
| 9652751k 1F3.0 | 25260300.0 cm-1 |
| 9652751k 1D2.0 | 25262300.0 cm-1 |
| 9652751k 1G4.0 | 25264300.0 cm-1 |
| 9652751j 3P4.0 | 25342300.0 cm-1 |
| 9652751k 3G13.0 | 25396300.0 cm-1 |
| 9652751k 3I19.0 | 25402300.0 cm-1 |
| 9652751k 3H16.0 | 25403300.0 cm-1 |
| 9652751j 3D7.0 | 25412300.0 cm-1 |
| 9652751k 3D7.0 | 25496300.0 cm-1 |
| 2455560652751c 3P4.0 | 25578300.0 cm-1 |
| 9652751j 1H5.0 | 25586300.0 cm-1 |
| 9652751j 1G4.0 | 25592300.0 cm-1 |
| 9652751k 3F10.0 | 25606300.0 cm-1 |
| 2455560652751d 3D7.0 | 25636300.0 cm-1 |
| 2455560652751d 3F10.0 | 25716300.0 cm-1 |
| 9652751k 1I6.0 | 25780300.0 cm-1 |
| 9652751k 1H5.0 | 25788300.0 cm-1 |
| 2455560652751e 1F3.0 | 25793300.0 cm-1 |
| 2455560652751e 1D2.0 | 25809300.0 cm-1 |
| 2455560652751e 3F10.0 | 26374300.0 cm-1 |
| 2455560652751e 3G13.0 | 26409300.0 cm-1 |
| 2455560652751d 3P4.0 | 26508300.0 cm-1 |
| 2455560652751e 3D7.0 | 26921300.0 cm-1 |
| 2455560652751c 1D2.0 | 26982300.0 cm-1 |
| 2455560652751d 1F3.0 | 27643300.0 cm-1 |
| 2455560652751h 3S1.0 | 27790300.0 cm-1 |
| 2455560652751h 1P1.0 | 27993300.0 cm-1 |
| 2455560652751h 1S0.0 | 28016300.0 cm-1 |
| 2455560652751e 1G4.0 | 28257300.0 cm-1 |
| 2455560652751i 1D2.0 | 28361300.0 cm-1 |
| 2455560652751i 1P1.0 | 28362300.0 cm-1 |
| 2455560652751h 3D7.0 | 28378300.0 cm-1 |
| 2455560652751j 1F3.0 | 28694300.0 cm-1 |
| 2455560652751j 1D2.0 | 28702300.0 cm-1 |
| 2455560652751i 3D7.0 | 28834300.0 cm-1 |
| 2455560652751i 3F10.0 | 28921300.0 cm-1 |
| 2455560652751h 3P4.0 | 29073300.0 cm-1 |
| 2455560652751j 3F10.0 | 29278300.0 cm-1 |
| 2455560652751j 3G13.0 | 29321300.0 cm-1 |
| 2455560652751i 3P4.0 | 29709300.0 cm-1 |
| 2455560652751j 3D7.0 | 29833300.0 cm-1 |
| 2455560652751h 1D2.0 | 30462300.0 cm-1 |
| 2455560652751i 1F3.0 | 30827300.0 cm-1 |
| 2455560652751j 1G4.0 | 31160300.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 606527 == 3DA 4S2 1 1S 1S/ 2 606517518 == 3DA 4S1 4P1 1 2S 2S/ 1 2P 3P/ 3 606517518 == 3DA 4S1 4P1 1 2S 2S/ 1 2P 1P/ 4 606517519 == 3DA 4S1 4D1 1 2S 2S/ 1 2D 3D/ 5 606517519 == 3DA 4S1 4D1 1 2S 2S/ 1 2D 1D/ 6 60651751A == 3DA 4S1 4F1 1 2S 2S/ 1 2F 3F/ 7 60651751A == 3DA 4S1 4F1 1 2S 2S/ 1 2F 1F/ 8 60651751B == 3DA 4S1 5S1 1 2S 2S/ 1 2S 3S/ 9 60651751B == 3DA 4S1 5S1 1 2S 2S/ 1 2S 1S/ 10 60651751C == 3DA 4S1 5P1 1 2S 2S/ 1 2P 3P/ 11 60651751C == 3DA 4S1 5P1 1 2S 2S/ 1 2P 1P/ 12 60651751D == 3DA 4S1 5D1 1 2S 2S/ 1 2D 3D/ 13 60651751D == 3DA 4S1 5D1 1 2S 2S/ 1 2D 1D/ 14 60651751G == 3DA 4S1 6S1 1 2S 2S/ 1 2S 3S/ 15 60651751G == 3DA 4S1 6S1 1 2S 2S/ 1 2S 1S/ 16 60651751H == 3DA 4S1 6P1 1 2S 2S/ 1 2P 3P/ 17 60651751H == 3DA 4S1 6P1 1 2S 2S/ 1 2P 1P/ 18 60651751I == 3DA 4S1 6D1 1 2S 2S/ 1 2D 3D/ 19 60651751I == 3DA 4S1 6D1 1 2S 2S/ 1 2D 1D/ 20 96527519 == 3D9 4S2 4D1 * 1 2D 2D/ 1 2D 3S/ 21 96527519 == 3D9 4S2 4D1 * 1 2D 2D/ 1 2D 1F/ 22 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 1P/ 23 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 3D/ 24 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 1D/ 25 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 3G/ 26 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 3F/ 27 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 3P/ 28 96527519 == 3D9 4S2 4D1 * 1 2D 2D/ 1 2D 1G/ 29 96527519 == 3D9 4S2 4D1 1 2D 2D/ 1 2D 1S/ 30 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 1D/ 31 24555606527518 == 3P5 3DA 4S2 4P1 * 1 2P 2P/ 1 2P 3S/ 32 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 1F/ 33 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 3H/ 34 9652751A == 3D9 4S2 4F1 * 1 2D 2D/ 1 2F 3F/ 35 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 3G/ 36 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 3P/ 37 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 3D/ 38 9652751A == 3D9 4S2 4F1 * 1 2D 2D/ 1 2F 1H/ 39 9652751A == 3D9 4S2 4F1 * 1 2D 2D/ 1 2F 1G/ 40 9652751A == 3D9 4S2 4F1 1 2D 2D/ 1 2F 1P/ 41 24555606527518 == 3P5 3DA 4S2 4P1 1 2P 2P/ 1 2P 1P/ 42 24555606527518 == 3P5 3DA 4S2 4P1 1 2P 2P/ 1 2P 3D/ 43 24555606527518 == 3P5 3DA 4S2 4P1 1 2P 2P/ 1 2P 1S/ 44 24555606527518 == 3P5 3DA 4S2 4P1 1 2P 2P/ 1 2P 3P/ 45 24555606527519 == 3P5 3DA 4S2 4D1 1 2P 2P/ 1 2D 1D/ 46 24555606527519 == 3P5 3DA 4S2 4D1 1 2P 2P/ 1 2D 1P/ 47 24555606527519 == 3P5 3DA 4S2 4D1 1 2P 2P/ 1 2D 3D/ 48 24555606527519 == 3P5 3DA 4S2 4D1 1 2P 2P/ 1 2D 3F/ 49 24555606527518 == 3P5 3DA 4S2 4P1 * 1 2P 2P/ 1 2P 1D/ 50 24555606527519 == 3P5 3DA 4S2 4D1 1 2P 2P/ 1 2D 3P/ 51 2455560652751A == 3P5 3DA 4S2 4F1 1 2P 2P/ 1 2F 1F/ 52 2455560652751A == 3P5 3DA 4S2 4F1 1 2P 2P/ 1 2F 1D/ 53 2455560652751A == 3P5 3DA 4S2 4F1 1 2P 2P/ 1 2F 3F/ 54 2455560652751A == 3P5 3DA 4S2 4F1 1 2P 2P/ 1 2F 3G/ 55 24555606527519 == 3P5 3DA 4S2 4D1 * 1 2P 2P/ 1 2D 1F/ 56 9652751D == 3D9 4S2 5D1 * 1 2D 2D/ 1 2D 3S/ 57 2455560652751A == 3P5 3DA 4S2 4F1 1 2P 2P/ 1 2F 3D/ 58 9652751D == 3D9 4S2 5D1 * 1 2D 2D/ 1 2D 1F/ 59 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 1P/ 60 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 1D/ 61 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 3D/ 62 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 3G/ 63 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 3F/ 64 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 3P/ 65 9652751D == 3D9 4S2 5D1 1 2D 2D/ 1 2D 1S/ 66 9652751D == 3D9 4S2 5D1 * 1 2D 2D/ 1 2D 1G/ 67 9652751E == 3D9 4S2 5F1 1 2D 2D/ 1 2F 1D/ 68 9652751E == 3D9 4S2 5F1 1 2D 2D/ 1 2F 1F/ 69 9652751E == 3D9 4S2 5F1 * 1 2D 2D/ 1 2F 3F/ 70 9652751E == 3D9 4S2 5F1 1 2D 2D/ 1 2F 3H/ 71 9652751E == 3D9 4S2 5F1 1 2D 2D/ 1 2F 3G/ 72 9652751E == 3D9 4S2 5F1 * 1 2D 2D/ 1 2F 3D/ 73 9652751E == 3D9 4S2 5F1 1 2D 2D/ 1 2F 3P/ 74 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 1D/ 75 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 1F/ 76 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 1G/ 77 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 3G/ 78 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 3I/ 79 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 3H/ 80 9652751E == 3D9 4S2 5F1 * 1 2D 2D/ 1 2F 1H/ 81 9652751E == 3D9 4S2 5F1 * 1 2D 2D/ 1 2F 1G/ 82 9652751E == 3D9 4S2 5F1 1 2D 2D/ 1 2F 1P/ 83 9652751F == 3D9 4S2 5G1 1 2D 2D/ 1 2G 3D/ 84 2455560652751A == 3P5 3DA 4S2 4F1 * 1 2P 2P/ 1 2F 1G/ 85 9652751F == 3D9 4S2 5G1 * 1 2D 2D/ 1 2G 3F/ 86 9652751F == 3D9 4S2 5G1 * 1 2D 2D/ 1 2G 1I/ 87 9652751F == 3D9 4S2 5G1 * 1 2D 2D/ 1 2G 1H/ 88 2455560652751C == 3P5 3DA 4S2 5P1 * 1 2P 2P/ 1 2P 3S/ 89 2455560652751C == 3P5 3DA 4S2 5P1 1 2P 2P/ 1 2P 1P/ 90 2455560652751C == 3P5 3DA 4S2 5P1 1 2P 2P/ 1 2P 1S/ 91 9652751I == 3D9 4S2 6D1 * 1 2D 2D/ 1 2D 1F/ 92 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 1P/ 93 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 1D/ 94 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 1S/ 95 2455560652751C == 3P5 3DA 4S2 5P1 1 2P 2P/ 1 2P 3D/ 96 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 3D/ 97 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 3G/ 98 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 3F/ 99 9652751I == 3D9 4S2 6D1 1 2D 2D/ 1 2D 3P/ 100 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 1D/ 101 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 1F/ 102 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 1P/ 103 2455560652751D == 3P5 3DA 4S2 5D1 1 2P 2P/ 1 2D 1D/ 104 2455560652751D == 3P5 3DA 4S2 5D1 1 2P 2P/ 1 2D 1P/ 105 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 3F/ 106 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 3H/ 107 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 3G/ 108 9652751I == 3D9 4S2 6D1 * 1 2D 2D/ 1 2D 3S/ 109 9652751I == 3D9 4S2 6D1 * 1 2D 2D/ 1 2D 1G/ 110 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 1F/ 111 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 1D/ 112 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 1G/ 113 9652751J == 3D9 4S2 6F1 1 2D 2D/ 1 2F 3P/ 114 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 3G/ 115 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 3I/ 116 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 3H/ 117 9652751J == 3D9 4S2 6F1 * 1 2D 2D/ 1 2F 3D/ 118 9652751K == 3D9 4S2 6G1 1 2D 2D/ 1 2G 3D/ 119 2455560652751C == 3P5 3DA 4S2 5P1 1 2P 2P/ 1 2P 3P/ 120 9652751J == 3D9 4S2 6F1 * 1 2D 2D/ 1 2F 1H/ 121 9652751J == 3D9 4S2 6F1 * 1 2D 2D/ 1 2F 1G/ 122 9652751K == 3D9 4S2 6G1 * 1 2D 2D/ 1 2G 3F/ 123 2455560652751D == 3P5 3DA 4S2 5D1 1 2P 2P/ 1 2D 3D/ 124 2455560652751D == 3P5 3DA 4S2 5D1 1 2P 2P/ 1 2D 3F/ 125 9652751K == 3D9 4S2 6G1 * 1 2D 2D/ 1 2G 1I/ 126 9652751K == 3D9 4S2 6G1 * 1 2D 2D/ 1 2G 1H/ 127 2455560652751E == 3P5 3DA 4S2 5F1 1 2P 2P/ 1 2F 1F/ 128 2455560652751E == 3P5 3DA 4S2 5F1 1 2P 2P/ 1 2F 1D/ 129 2455560652751E == 3P5 3DA 4S2 5F1 1 2P 2P/ 1 2F 3F/ 130 2455560652751E == 3P5 3DA 4S2 5F1 1 2P 2P/ 1 2F 3G/ 131 2455560652751D == 3P5 3DA 4S2 5D1 1 2P 2P/ 1 2D 3P/ 132 2455560652751E == 3P5 3DA 4S2 5F1 1 2P 2P/ 1 2F 3D/ 133 2455560652751C == 3P5 3DA 4S2 5P1 * 1 2P 2P/ 1 2P 1D/ 134 2455560652751D == 3P5 3DA 4S2 5D1 * 1 2P 2P/ 1 2D 1F/ 135 2455560652751H == 3P5 3DA 4S2 6P1 * 1 2P 2P/ 1 2P 3S/ 136 2455560652751H == 3P5 3DA 4S2 6P1 1 2P 2P/ 1 2P 1P/ 137 2455560652751H == 3P5 3DA 4S2 6P1 1 2P 2P/ 1 2P 1S/ 138 2455560652751E == 3P5 3DA 4S2 5F1 * 1 2P 2P/ 1 2F 1G/ 139 2455560652751I == 3P5 3DA 4S2 6D1 1 2P 2P/ 1 2D 1D/ 140 2455560652751I == 3P5 3DA 4S2 6D1 1 2P 2P/ 1 2D 1P/ 141 2455560652751H == 3P5 3DA 4S2 6P1 1 2P 2P/ 1 2P 3D/ 142 2455560652751J == 3P5 3DA 4S2 6F1 1 2P 2P/ 1 2F 1F/ 143 2455560652751J == 3P5 3DA 4S2 6F1 1 2P 2P/ 1 2F 1D/ 144 2455560652751I == 3P5 3DA 4S2 6D1 1 2P 2P/ 1 2D 3D/ 145 2455560652751I == 3P5 3DA 4S2 6D1 1 2P 2P/ 1 2D 3F/ 146 2455560652751H == 3P5 3DA 4S2 6P1 1 2P 2P/ 1 2P 3P/ 147 2455560652751J == 3P5 3DA 4S2 6F1 1 2P 2P/ 1 2F 3F/ 148 2455560652751J == 3P5 3DA 4S2 6F1 1 2P 2P/ 1 2F 3G/ 149 2455560652751I == 3P5 3DA 4S2 6D1 1 2P 2P/ 1 2D 3P/ 150 2455560652751J == 3P5 3DA 4S2 6F1 1 2P 2P/ 1 2F 3D/ 151 2455560652751H == 3P5 3DA 4S2 6P1 * 1 2P 2P/ 1 2P 1D/ 152 2455560652751I == 3P5 3DA 4S2 6D1 * 1 2P 2P/ 1 2D 1F/ 153 2455560652751J == 3P5 3DA 4S2 6F1 * 1 2P 2P/ 1 2F 1G/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 Map to LS levels : 1 2 2 2 3 4 4 4 5 6 6 6 7 8 9 10 10 10 11 12 12 12 13 14 15 16 16 16 17 18 18 18 19 20 25 23 21 22 25 23 24 26 27 23 25 26 27 28 27 26 29 36 36 33 37 34 35 33 30 31 34 42 35 32 37 33 34 36 35 38 37 39 40 42 41 44 43 50 50 48 47 48 45 46 47 42 44 44 49 57 57 54 53 54 51 53 52 48 47 50 55 56 62 61 58 59 62 61 60 63 64 61 62 63 65 64 66 64 63 73 73 70 72 69 71 70 67 69 71 68 72 83 83 78 85 78 77 79 74 75 76 77 79 70 69 73 71 80 72 81 82 54 53 57 84 78 85 77 86 79 83 85 87 88 95 95 89 119 90 99 97 96 91 92 97 96 93 98 94 113 113 106 117 105 107 106 100 105 107 101 131 131 124 102 123 124 103 104 123 96 97 98 99 118 108 118 115 109 99 122 115 114 116 98 110 111 112 114 116 106 105 107 113 120 117 121 117 132 132 130 129 115 122 118 114 130 125 116 122 126 127 129 128 95 119 119 133 124 123 131 134 135 141 141 136 146 137 130 129 132 138 149 149 145 144 145 139 140 144 150 150 148 147 148 142 147 143 141 146 146 151 145 144 149 152 148 147 150 153 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#adf34_tungsten_w44.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 10861 4464 9848 initially 3853 1414 4006 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Adam Foster Date : 15/05/09 --------------------------------------------------------------------------------