arf40_ls#w50.dat
        Resolved Specific Ion Data Collections
        
        
                - Ion
- W50+
- Temperature Range
- 44.81 eV  → 6.721 x 104 eV
        ADF04
        
                - Filename
- arf40_ls#w50.dat
- Full Path
- adf04/coparf#74/arf40_ls#w50.dat
Download data 
        
                        
                
                - Spontaneous Emission: W+50(i) → W+50(j) + hv
- Electron Impact Excitation: W+50(i) + e → W+50(j) + e
 
                | 66 1D2.0 | 0.0 cm-1 | 
| 66 3F10.0 | 479950.0 cm-1 | 
| 66 5D12.0 | 579920.0 cm-1 | 
| 66 1G4.0 | 672270.0 cm-1 | 
| 66 3D7.0 | 717090.0 cm-1 | 
| 66 3H16.0 | 839680.0 cm-1 | 
| 66 3P4.0 | 933851.0 cm-1 | 
| 66 3G13.0 | 1036920.0 cm-1 | 
| 66 3F10.0 | 1062840.0 cm-1 | 
| 66 1I6.0 | 1091900.0 cm-1 | 
| 66 1G4.0 | 1143460.0 cm-1 | 
| 66 1D2.0 | 1386790.0 cm-1 | 
| 66 3P4.0 | 1484000.0 cm-1 | 
| 66 1S0.0 | 1509900.0 cm-1 | 
| 66 1F3.0 | 1718570.0 cm-1 | 
| 66 1S0.0 | 2203530.0 cm-1 | 
| 24555576 1S0.0 | 3109230.0 cm-1 | 
| 24555576 1D2.0 | 3309130.0 cm-1 | 
| 24555576 1G4.0 | 3656130.0 cm-1 | 
| 24555576 3H16.0 | 3704030.0 cm-1 | 
| 24555576 5S2.0 | 3740530.0 cm-1 | 
| 24555576 1H5.0 | 3823230.0 cm-1 | 
| 24555576 1G4.0 | 3825430.0 cm-1 | 
| 24555576 3D7.0 | 3837430.0 cm-1 | 
| 24555576 1H5.0 | 4016330.0 cm-1 | 
| 24555576 1F3.0 | 4063930.0 cm-1 | 
| 24555576 1P1.0 | 4097630.0 cm-1 | 
| 24555576 3F10.0 | 4164530.0 cm-1 | 
| 24555576 5F17.0 | 4263230.0 cm-1 | 
| 24555576 3D7.0 | 4312330.0 cm-1 | 
| 24555576 1D2.0 | 4369830.0 cm-1 | 
| 24555576 1G4.0 | 4399930.0 cm-1 | 
| 24555576 5G22.0 | 4409130.0 cm-1 | 
| 24555576 3S1.0 | 4452530.0 cm-1 | 
| 24555576 3P4.0 | 4482730.0 cm-1 | 
| 24555576 3F10.0 | 4566530.0 cm-1 | 
| 24555576 1F3.0 | 4579330.0 cm-1 | 
| 24555576 5D12.0 | 4640730.0 cm-1 | 
| 24555576 1D2.0 | 4653830.0 cm-1 | 
| 24555576 1P1.0 | 4789330.0 cm-1 | 
| 24555576 5D12.0 | 4806330.0 cm-1 | 
| 24555576 3D7.0 | 4814230.0 cm-1 | 
| 24555576 3I19.0 | 4818230.0 cm-1 | 
| 24555576 3D7.0 | 4861030.0 cm-1 | 
| 24555576 3F10.0 | 4872830.0 cm-1 | 
| 24555576 1P1.0 | 5030530.0 cm-1 | 
| 24555576 3G13.0 | 5068630.0 cm-1 | 
| 24555576 3P4.0 | 5133530.0 cm-1 | 
| 24555576 5P7.0 | 5141230.0 cm-1 | 
| 24555576 3G13.0 | 5199030.0 cm-1 | 
| 24555576 3F10.0 | 5211630.0 cm-1 | 
| 24555576 3H16.0 | 5298530.0 cm-1 | 
| 24555576 3F10.0 | 5467430.0 cm-1 | 
| 24555576 3D7.0 | 5473630.0 cm-1 | 
| 24555576 3D7.0 | 5492130.0 cm-1 | 
| 24555576 3G13.0 | 5656530.0 cm-1 | 
| 24555576 3P4.0 | 5692830.0 cm-1 | 
| 24555576 3G13.0 | 5733330.0 cm-1 | 
| 24555576 3P4.0 | 5814630.0 cm-1 | 
| 24555576 1F3.0 | 6061630.0 cm-1 | 
| 24555576 1I6.0 | 6413130.0 cm-1 | 
| 24555576 3S1.0 | 6588130.0 cm-1 | 
| 24555576 1F3.0 | 6660330.0 cm-1 | 
| 24555576 1D2.0 | 6682930.0 cm-1 | 
| 56518 5S2.0 | 15034000.0 cm-1 | 
| 56518 1F3.0 | 15041000.0 cm-1 | 
| 56518 1G4.0 | 15699000.0 cm-1 | 
| 56518 1P1.0 | 15834000.0 cm-1 | 
| 56518 3S1.0 | 16008000.0 cm-1 | 
| 56518 3F10.0 | 16085000.0 cm-1 | 
| 56518 3H16.0 | 16148000.0 cm-1 | 
| 56518 3H16.0 | 16230000.0 cm-1 | 
| 56518 5P7.0 | 16241000.0 cm-1 | 
| 56518 3F10.0 | 16258000.0 cm-1 | 
| 56518 3D7.0 | 16295000.0 cm-1 | 
| 56518 3G13.0 | 16355000.0 cm-1 | 
| 56518 5F17.0 | 16423000.0 cm-1 | 
| 56518 5P7.0 | 16439000.0 cm-1 | 
| 56518 3F10.0 | 16443000.0 cm-1 | 
| 56518 3J22.0 | 16497000.0 cm-1 | 
| 56518 1F3.0 | 16501000.0 cm-1 | 
| 56518 1J7.0 | 16522000.0 cm-1 | 
| 56518 1I6.0 | 16531000.0 cm-1 | 
| 56518 1D2.0 | 16544000.0 cm-1 | 
| 56518 5G22.0 | 16554000.0 cm-1 | 
| 56518 5D12.0 | 16558000.0 cm-1 | 
| 56518 3F10.0 | 16561000.0 cm-1 | 
| 56518 1H5.0 | 16618000.0 cm-1 | 
| 56518 3I19.0 | 16639000.0 cm-1 | 
| 56518 1D2.0 | 16639000.0 cm-1 | 
| 56518 3S1.0 | 16643000.0 cm-1 | 
| 56518 5D12.0 | 16649000.0 cm-1 | 
| 56518 3D7.0 | 16651000.0 cm-1 | 
| 56518 5H27.0 | 16658000.0 cm-1 | 
| 56518 3G13.0 | 16667000.0 cm-1 | 
| 56518 3D7.0 | 16684000.0 cm-1 | 
| 56518 3H16.0 | 16711000.0 cm-1 | 
| 56518 5P7.0 | 16725000.0 cm-1 | 
| 56518 7P10.0 | 16740000.0 cm-1 | 
| 56518 1F3.0 | 16746000.0 cm-1 | 
| 56518 1D2.0 | 16753000.0 cm-1 | 
| 56518 3F10.0 | 16759000.0 cm-1 | 
| 56518 3G13.0 | 16788000.0 cm-1 | 
| 56518 3D7.0 | 16796000.0 cm-1 | 
| 56518 3G13.0 | 16808000.0 cm-1 | 
| 56518 3F10.0 | 16813000.0 cm-1 | 
| 56518 3P4.0 | 16843000.0 cm-1 | 
| 56518 5F17.0 | 16892000.0 cm-1 | 
| 56518 3P4.0 | 16895000.0 cm-1 | 
| 56518 3F10.0 | 16908000.0 cm-1 | 
| 56518 3I19.0 | 16952000.0 cm-1 | 
| 56518 3D7.0 | 16984000.0 cm-1 | 
| 56518 3F10.0 | 16989000.0 cm-1 | 
| 56518 3H16.0 | 17006000.0 cm-1 | 
| 56518 3P4.0 | 17017000.0 cm-1 | 
| 56518 5G22.0 | 17020000.0 cm-1 | 
| 56519 1P1.0 | 17042000.0 cm-1 | 
| 56518 3D7.0 | 17075000.0 cm-1 | 
| 56518 3G13.0 | 17096000.0 cm-1 | 
| 56518 3P4.0 | 17099000.0 cm-1 | 
| 56518 1H5.0 | 17101000.0 cm-1 | 
| 56518 1I6.0 | 17104000.0 cm-1 | 
| 56518 3P4.0 | 17146000.0 cm-1 | 
| 56518 3H16.0 | 17148000.0 cm-1 | 
| 56518 5F17.0 | 17148000.0 cm-1 | 
| 56518 3G13.0 | 17160000.0 cm-1 | 
| 56518 5D12.0 | 17163000.0 cm-1 | 
| 56518 3D7.0 | 17221000.0 cm-1 | 
| 56519 1H5.0 | 17237000.0 cm-1 | 
| 56518 3G13.0 | 17257000.0 cm-1 | 
| 56518 1G4.0 | 17292000.0 cm-1 | 
| 56518 1F3.0 | 17310000.0 cm-1 | 
| 56518 3P4.0 | 17322000.0 cm-1 | 
| 56518 3D7.0 | 17354000.0 cm-1 | 
| 56519 5D12.0 | 17365000.0 cm-1 | 
| 56518 1S0.0 | 17374000.0 cm-1 | 
| 56518 1P1.0 | 17401000.0 cm-1 | 
| 56518 1P1.0 | 17465000.0 cm-1 | 
| 56518 3F10.0 | 17501000.0 cm-1 | 
| 56518 3D7.0 | 17517000.0 cm-1 | 
| 56518 3F10.0 | 17575000.0 cm-1 | 
| 56518 1F3.0 | 17669000.0 cm-1 | 
| 56518 1H5.0 | 17673000.0 cm-1 | 
| 56519 3P4.0 | 17676000.0 cm-1 | 
| 56518 1G4.0 | 17685000.0 cm-1 | 
| 56519 1H5.0 | 17687000.0 cm-1 | 
| 56518 1D2.0 | 17689000.0 cm-1 | 
| 56518 1G4.0 | 17715000.0 cm-1 | 
| 56519 1F3.0 | 17716000.0 cm-1 | 
| 56518 1F3.0 | 17722000.0 cm-1 | 
| 56518 1D2.0 | 17750000.0 cm-1 | 
| 56518 3P4.0 | 17754000.0 cm-1 | 
| 56518 1P1.0 | 17763000.0 cm-1 | 
| 56518 1F3.0 | 17780000.0 cm-1 | 
| 56518 1H5.0 | 17783000.0 cm-1 | 
| 56519 3P4.0 | 17789000.0 cm-1 | 
| 56519 1K8.0 | 17795000.0 cm-1 | 
| 56519 1H5.0 | 17814000.0 cm-1 | 
| 56519 7D17.0 | 17820000.0 cm-1 | 
| 56519 5S2.0 | 17822000.0 cm-1 | 
| 56519 3I19.0 | 17824000.0 cm-1 | 
| 56518 1P1.0 | 17828000.0 cm-1 | 
| 56519 1J7.0 | 17846000.0 cm-1 | 
| 56519 1F3.0 | 17853000.0 cm-1 | 
| 56519 1P1.0 | 17854000.0 cm-1 | 
| 56519 3F10.0 | 17859000.0 cm-1 | 
| 56519 5F17.0 | 17881000.0 cm-1 | 
| 56519 5G22.0 | 17892000.0 cm-1 | 
| 56519 3G13.0 | 17909000.0 cm-1 | 
| 56519 3G13.0 | 17917000.0 cm-1 | 
| 56519 1D2.0 | 17934000.0 cm-1 | 
| 56519 5D12.0 | 17959000.0 cm-1 | 
| 56519 3F10.0 | 17961000.0 cm-1 | 
| 56519 1D2.0 | 17988000.0 cm-1 | 
| 56519 5P7.0 | 17995000.0 cm-1 | 
| 56519 1F3.0 | 18006000.0 cm-1 | 
| 56519 3D7.0 | 18015000.0 cm-1 | 
| 56519 3G13.0 | 18026000.0 cm-1 | 
| 56519 3D7.0 | 18028000.0 cm-1 | 
| 56519 1G4.0 | 18033000.0 cm-1 | 
| 56519 3H16.0 | 18049000.0 cm-1 | 
| 56519 5P7.0 | 18067000.0 cm-1 | 
| 56519 3P4.0 | 18088000.0 cm-1 | 
| 56519 5H27.0 | 18101000.0 cm-1 | 
| 56519 3H16.0 | 18155000.0 cm-1 | 
| 56519 5F17.0 | 18176000.0 cm-1 | 
| 56519 1D2.0 | 18176000.0 cm-1 | 
| 56519 3F10.0 | 18189000.0 cm-1 | 
| 56519 5G22.0 | 18195000.0 cm-1 | 
| 56519 5I32.0 | 18204000.0 cm-1 | 
| 56519 3K25.0 | 18213000.0 cm-1 | 
| 56519 3J22.0 | 18218000.0 cm-1 | 
| 56519 3F10.0 | 18219000.0 cm-1 | 
| 56519 3F10.0 | 18236000.0 cm-1 | 
| 56518 1G4.0 | 18237000.0 cm-1 | 
| 56518 1D2.0 | 18253000.0 cm-1 | 
| 56519 5P7.0 | 18262000.0 cm-1 | 
| 56519 3I19.0 | 18265000.0 cm-1 | 
| 56519 3G13.0 | 18268000.0 cm-1 | 
| 56519 3I19.0 | 18273000.0 cm-1 | 
| 56519 3G13.0 | 18276000.0 cm-1 | 
| 56519 3J22.0 | 18278000.0 cm-1 | 
| 56519 3G13.0 | 18302000.0 cm-1 | 
| 56519 3S1.0 | 18317000.0 cm-1 | 
| 56519 3I19.0 | 18323000.0 cm-1 | 
| 5651a 1H5.0 | 18324000.0 cm-1 | 
| 56519 5D12.0 | 18327000.0 cm-1 | 
| 56519 3F10.0 | 18332000.0 cm-1 | 
| 56519 1H5.0 | 18343000.0 cm-1 | 
| 56519 3P4.0 | 18346000.0 cm-1 | 
| 56519 5F17.0 | 18359000.0 cm-1 | 
| 56519 1G4.0 | 18361000.0 cm-1 | 
| 56519 3D7.0 | 18376000.0 cm-1 | 
| 56519 3D7.0 | 18383000.0 cm-1 | 
| 56519 5F17.0 | 18393000.0 cm-1 | 
| 56519 5D12.0 | 18397000.0 cm-1 | 
| 56519 1S0.0 | 18413000.0 cm-1 | 
| 56519 3P4.0 | 18414000.0 cm-1 | 
| 56519 1D2.0 | 18419000.0 cm-1 | 
| 56519 3I19.0 | 18423000.0 cm-1 | 
| 56519 1H5.0 | 18431000.0 cm-1 | 
| 56519 1G4.0 | 18437000.0 cm-1 | 
| 56519 3H16.0 | 18443000.0 cm-1 | 
| 56519 3P4.0 | 18472000.0 cm-1 | 
| 56519 5H27.0 | 18476000.0 cm-1 | 
| 56519 3P4.0 | 18484000.0 cm-1 | 
| 56519 3D7.0 | 18491000.0 cm-1 | 
| 56519 1I6.0 | 18493000.0 cm-1 | 
| 56519 1F3.0 | 18507000.0 cm-1 | 
| 56519 1I6.0 | 18510000.0 cm-1 | 
| 56519 5G22.0 | 18511000.0 cm-1 | 
| 56519 3H16.0 | 18521000.0 cm-1 | 
| 56519 3G13.0 | 18527000.0 cm-1 | 
| 56519 5D12.0 | 18529000.0 cm-1 | 
| 56519 3S1.0 | 18531000.0 cm-1 | 
| 56519 3F10.0 | 18532000.0 cm-1 | 
| 56519 1G4.0 | 18532000.0 cm-1 | 
| 56519 3D7.0 | 18551000.0 cm-1 | 
| 56519 3F10.0 | 18568000.0 cm-1 | 
| 56519 3D7.0 | 18571000.0 cm-1 | 
| 56519 3D7.0 | 18572000.0 cm-1 | 
| 56519 1F3.0 | 18578000.0 cm-1 | 
| 56519 3G13.0 | 18580000.0 cm-1 | 
| 56519 3H16.0 | 18583000.0 cm-1 | 
| 56519 3F10.0 | 18599000.0 cm-1 | 
| 56519 3D7.0 | 18601000.0 cm-1 | 
| 56519 1G4.0 | 18624000.0 cm-1 | 
| 56519 3F10.0 | 18633000.0 cm-1 | 
| 56519 1D2.0 | 18638000.0 cm-1 | 
| 56519 3G13.0 | 18641000.0 cm-1 | 
| 56519 1P1.0 | 18646000.0 cm-1 | 
| 56519 3F10.0 | 18658000.0 cm-1 | 
| 56519 3D7.0 | 18692000.0 cm-1 | 
| 56519 1P1.0 | 18712000.0 cm-1 | 
| 56519 3D7.0 | 18716000.0 cm-1 | 
| 56519 3H16.0 | 18718000.0 cm-1 | 
| 56519 3G13.0 | 18726000.0 cm-1 | 
| 56519 1J7.0 | 18736000.0 cm-1 | 
| 56519 3D7.0 | 18742000.0 cm-1 | 
| 56519 3D7.0 | 18743000.0 cm-1 | 
| 56519 1D2.0 | 18762000.0 cm-1 | 
| 5651a 3F10.0 | 18763000.0 cm-1 | 
| 56519 1I6.0 | 18776000.0 cm-1 | 
| 56519 3G13.0 | 18779000.0 cm-1 | 
| 56519 3H16.0 | 18796000.0 cm-1 | 
| 56519 3H16.0 | 18830000.0 cm-1 | 
| 56519 3P4.0 | 18836000.0 cm-1 | 
| 56519 3S1.0 | 18870000.0 cm-1 | 
| 56519 3F10.0 | 18877000.0 cm-1 | 
| 5651a 3F10.0 | 18893000.0 cm-1 | 
| 56519 1I6.0 | 18895000.0 cm-1 | 
| 56519 3G13.0 | 18901000.0 cm-1 | 
| 56519 3P4.0 | 18920000.0 cm-1 | 
| 5651a 1I6.0 | 18925000.0 cm-1 | 
| 56519 1G4.0 | 18940000.0 cm-1 | 
| 56519 1F3.0 | 18940000.0 cm-1 | 
| 5651a 1I6.0 | 18971000.0 cm-1 | 
| 5651a 5S2.0 | 18977000.0 cm-1 | 
| 56519 1G4.0 | 18981000.0 cm-1 | 
| 56519 1D2.0 | 18985000.0 cm-1 | 
| 56519 1F3.0 | 19000000.0 cm-1 | 
| 5651a 5H27.0 | 19001000.0 cm-1 | 
| 5651a 1K8.0 | 19002000.0 cm-1 | 
| 5651a 3I19.0 | 19006000.0 cm-1 | 
| 56519 1G4.0 | 19008000.0 cm-1 | 
| 5651a 1I6.0 | 19023000.0 cm-1 | 
| 56519 1H5.0 | 19026000.0 cm-1 | 
| 56519 1P1.0 | 19030000.0 cm-1 | 
| 56519 3F10.0 | 19034000.0 cm-1 | 
| 5651a 5P7.0 | 19035000.0 cm-1 | 
| 5651a 1P1.0 | 19036000.0 cm-1 | 
| 5651a 3D7.0 | 19038000.0 cm-1 | 
| 5651a 5F17.0 | 19040000.0 cm-1 | 
| 5651a 7F24.0 | 19040000.0 cm-1 | 
| 5651a 1H5.0 | 19045000.0 cm-1 | 
| 56519 1S0.0 | 19062000.0 cm-1 | 
| 5651a 5F17.0 | 19086000.0 cm-1 | 
| 5651a 3S1.0 | 19087000.0 cm-1 | 
| 5651a 3H16.0 | 19093000.0 cm-1 | 
| 5651a 1D2.0 | 19097000.0 cm-1 | 
| 5651a 3D7.0 | 19103000.0 cm-1 | 
| 5651a 1P1.0 | 19122000.0 cm-1 | 
| 5651a 1G4.0 | 19123000.0 cm-1 | 
| 5651a 1P1.0 | 19134000.0 cm-1 | 
| 56519 1G4.0 | 19150000.0 cm-1 | 
| 5651a 1F3.0 | 19152000.0 cm-1 | 
| 56519 1F3.0 | 19163000.0 cm-1 | 
| 5651a 5H27.0 | 19165000.0 cm-1 | 
| 56519 1D2.0 | 19178000.0 cm-1 | 
| 5651a 3D7.0 | 19181000.0 cm-1 | 
| 5651a 3G13.0 | 19183000.0 cm-1 | 
| 5651a 3G13.0 | 19185000.0 cm-1 | 
| 5651a 5D12.0 | 19192000.0 cm-1 | 
| 5651a 5J37.0 | 19201000.0 cm-1 | 
| 5651a 5G22.0 | 19202000.0 cm-1 | 
| 5651a 3G13.0 | 19203000.0 cm-1 | 
| 56519 1S0.0 | 19235000.0 cm-1 | 
| 5651a 3P4.0 | 19271000.0 cm-1 | 
| 5651a 3J22.0 | 19280000.0 cm-1 | 
| 5651a 3P4.0 | 19284000.0 cm-1 | 
| 5651a 5F17.0 | 19306000.0 cm-1 | 
| 5651a 5I32.0 | 19308000.0 cm-1 | 
| 5651a 3H16.0 | 19309000.0 cm-1 | 
| 5651a 3G13.0 | 19331000.0 cm-1 | 
| 5651a 3K25.0 | 19358000.0 cm-1 | 
| 5651a 3P4.0 | 19361000.0 cm-1 | 
| 5651a 3F10.0 | 19364000.0 cm-1 | 
| 56519 1P1.0 | 19375000.0 cm-1 | 
| 5651a 3F10.0 | 19404000.0 cm-1 | 
| 5651a 3H16.0 | 19414000.0 cm-1 | 
| 5651a 3J22.0 | 19435000.0 cm-1 | 
| 5651a 3L28.0 | 19446000.0 cm-1 | 
| 5651a 3P4.0 | 19450000.0 cm-1 | 
| 5651a 1L9.0 | 19459000.0 cm-1 | 
| 5651a 5G22.0 | 19478000.0 cm-1 | 
| 5651a 3H16.0 | 19485000.0 cm-1 | 
| 5651a 5G22.0 | 19488000.0 cm-1 | 
| 5651a 5I32.0 | 19490000.0 cm-1 | 
| 56519 3S1.0 | 19491000.0 cm-1 | 
| 5651a 3H16.0 | 19496000.0 cm-1 | 
| 5651a 3D7.0 | 19500000.0 cm-1 | 
| 5651a 5F17.0 | 19509000.0 cm-1 | 
| 5651a 3K25.0 | 19511000.0 cm-1 | 
| 5651a 5G22.0 | 19514000.0 cm-1 | 
| 5651a 3H16.0 | 19519000.0 cm-1 | 
| 5651a 3J22.0 | 19527000.0 cm-1 | 
| 5651a 3D7.0 | 19529000.0 cm-1 | 
| 5651a 1H5.0 | 19530000.0 cm-1 | 
| 56519 1F3.0 | 19536000.0 cm-1 | 
| 56519 1D2.0 | 19541000.0 cm-1 | 
| 5651a 3G13.0 | 19550000.0 cm-1 | 
| 5651a 3I19.0 | 19554000.0 cm-1 | 
| 5651a 1S0.0 | 19556000.0 cm-1 | 
| 5651a 3D7.0 | 19557000.0 cm-1 | 
| 5651a 5F17.0 | 19580000.0 cm-1 | 
| 5651a 5P7.0 | 19594000.0 cm-1 | 
| 5651a 1J7.0 | 19604000.0 cm-1 | 
| 5651a 3G13.0 | 19610000.0 cm-1 | 
| 5651a 3P4.0 | 19624000.0 cm-1 | 
| 5651a 3F10.0 | 19630000.0 cm-1 | 
| 5651a 1F3.0 | 19642000.0 cm-1 | 
| 5651a 3G13.0 | 19648000.0 cm-1 | 
| 5651a 1I6.0 | 19648000.0 cm-1 | 
| 5651a 5P7.0 | 19649000.0 cm-1 | 
| 5651a 3F10.0 | 19649000.0 cm-1 | 
| 5651a 1G4.0 | 19656000.0 cm-1 | 
| 5651a 1F3.0 | 19667000.0 cm-1 | 
| 5651a 3P4.0 | 19670000.0 cm-1 | 
| 5651a 1P1.0 | 19672000.0 cm-1 | 
| 5651a 1F3.0 | 19678000.0 cm-1 | 
| 5651a 5H27.0 | 19683000.0 cm-1 | 
| 5651a 3F10.0 | 19684000.0 cm-1 | 
| 5651a 1J7.0 | 19685000.0 cm-1 | 
| 5651a 3H16.0 | 19686000.0 cm-1 | 
| 5651a 1I6.0 | 19689000.0 cm-1 | 
| 5651a 3H16.0 | 19692000.0 cm-1 | 
| 5651a 3F10.0 | 19693000.0 cm-1 | 
| 5651a 3H16.0 | 19693000.0 cm-1 | 
| 5651a 3P4.0 | 19694000.0 cm-1 | 
| 5651a 5D12.0 | 19696000.0 cm-1 | 
| 5651a 3H16.0 | 19705000.0 cm-1 | 
| 5651a 3D7.0 | 19707000.0 cm-1 | 
| 5651a 3I19.0 | 19712000.0 cm-1 | 
| 5651a 3I19.0 | 19731000.0 cm-1 | 
| 5651a 3F10.0 | 19738000.0 cm-1 | 
| 5651a 3F10.0 | 19750000.0 cm-1 | 
| 5651a 1D2.0 | 19752000.0 cm-1 | 
| 5651a 3S1.0 | 19752000.0 cm-1 | 
| 5651a 3P4.0 | 19755000.0 cm-1 | 
| 5651a 3F10.0 | 19759000.0 cm-1 | 
| 5651a 3I19.0 | 19765000.0 cm-1 | 
| 5651a 1H5.0 | 19768000.0 cm-1 | 
| 5651a 1F3.0 | 19778000.0 cm-1 | 
| 5651a 3J22.0 | 19778000.0 cm-1 | 
| 5651a 3P4.0 | 19779000.0 cm-1 | 
| 5651a 3I19.0 | 19781000.0 cm-1 | 
| 5651a 1G4.0 | 19783000.0 cm-1 | 
| 5651a 3H16.0 | 19796000.0 cm-1 | 
| 5651a 5D12.0 | 19809000.0 cm-1 | 
| 5651a 3G13.0 | 19815000.0 cm-1 | 
| 5651a 3J22.0 | 19823000.0 cm-1 | 
| 5651a 1G4.0 | 19827000.0 cm-1 | 
| 5651a 3D7.0 | 19830000.0 cm-1 | 
| 5651a 1H5.0 | 19833000.0 cm-1 | 
| 5651a 3D7.0 | 19835000.0 cm-1 | 
| 5651a 5D12.0 | 19842000.0 cm-1 | 
| 5651a 3G13.0 | 19848000.0 cm-1 | 
| 5651a 1G4.0 | 19851000.0 cm-1 | 
| 5651a 1P1.0 | 19867000.0 cm-1 | 
| 5651a 3F10.0 | 19873000.0 cm-1 | 
| 5651a 3G13.0 | 19874000.0 cm-1 | 
| 5651a 1D2.0 | 19878000.0 cm-1 | 
| 5651a 3D7.0 | 19893000.0 cm-1 | 
| 5651a 1D2.0 | 19900000.0 cm-1 | 
| 5651a 3D7.0 | 19901000.0 cm-1 | 
| 5651a 3G13.0 | 19907000.0 cm-1 | 
| 5651a 1F3.0 | 19947000.0 cm-1 | 
| 5651a 3I19.0 | 19955000.0 cm-1 | 
| 5651a 3G13.0 | 19959000.0 cm-1 | 
| 5651a 3F10.0 | 19971000.0 cm-1 | 
| 5651a 1K8.0 | 20021000.0 cm-1 | 
| 5651a 3I19.0 | 20023000.0 cm-1 | 
| 5651a 3S1.0 | 20034000.0 cm-1 | 
| 5651a 3D7.0 | 20037000.0 cm-1 | 
| 5651a 3D7.0 | 20054000.0 cm-1 | 
| 5651a 1J7.0 | 20060000.0 cm-1 | 
| 5651a 1G4.0 | 20062000.0 cm-1 | 
| 5651a 1D2.0 | 20064000.0 cm-1 | 
| 5651a 3G13.0 | 20088000.0 cm-1 | 
| 5651a 1G4.0 | 20091000.0 cm-1 | 
| 5651a 1H5.0 | 20110000.0 cm-1 | 
| 5651a 1F3.0 | 20123000.0 cm-1 | 
| 5651a 1S0.0 | 20127000.0 cm-1 | 
| 5651a 3F10.0 | 20135000.0 cm-1 | 
| 5651a 1I6.0 | 20141000.0 cm-1 | 
| 5651a 3P4.0 | 20153000.0 cm-1 | 
| 5651a 3H16.0 | 20164000.0 cm-1 | 
| 5651a 1G4.0 | 20172000.0 cm-1 | 
| 5651a 3F10.0 | 20177000.0 cm-1 | 
| 5651a 1J7.0 | 20204000.0 cm-1 | 
| 5651a 1F3.0 | 20218000.0 cm-1 | 
| 5651a 1D2.0 | 20219000.0 cm-1 | 
| 5651a 1G4.0 | 20239000.0 cm-1 | 
| 5651a 1D2.0 | 20246000.0 cm-1 | 
| 5651a 1F3.0 | 20251000.0 cm-1 | 
| 5651a 1F3.0 | 20284000.0 cm-1 | 
| 5651a 1H5.0 | 20288000.0 cm-1 | 
| 5651a 1H5.0 | 20291000.0 cm-1 | 
| 5651a 1G4.0 | 20296000.0 cm-1 | 
| 5651a 3G13.0 | 20317000.0 cm-1 | 
| 5651a 1P1.0 | 20320000.0 cm-1 | 
| 5651a 1D2.0 | 20348000.0 cm-1 | 
| 5651a 1F3.0 | 20437000.0 cm-1 | 
| 5651a 1P1.0 | 20481000.0 cm-1 | 
| 5651a 1D2.0 | 20716000.0 cm-1 | 
| 5651a 1H5.0 | 20723000.0 cm-1 | 
        Contributors
- Adam Foster
- Martin O'Mullane
 
        
 
 
 
        
 
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 66 == 3D6 * 14 1D 1D/ 2 66 == 3D6 5 3F 3F/ 3 66 == 3D6 1 5D 5D/ 4 66 == 3D6 10 1G 1G/ 5 66 == 3D6 6 3D 3D/ 6 66 == 3D6 2 3H 3H/ 7 66 == 3D6 8 3P 3P/ 8 66 == 3D6 * 3 3G 3G/ 9 66 == 3D6 4 3F 3F/ 10 66 == 3D6 9 1I 1I/ 11 66 == 3D6 11 1G 1G/ 12 66 == 3D6 13 1D 1D/ 13 66 == 3D6 7 3P 3P/ 14 66 == 3D6 15 1S 1S/ 15 66 == 3D6 * 12 1F 1F/ 16 66 == 3D6 * 16 1S 1S/ 17 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 1S/ 18 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 1D/ 19 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 3 2H 1G/ 20 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 3 2H 3H/ 21 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 5S/ 22 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 4 2G 1H/ 23 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 1G/ 24 24555576 == 3S2 3P5 3D7 1 2P 2P/ 7 2D 3D/ 25 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 3 2H 1H/ 26 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 1F/ 27 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 1P/ 28 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 5 2F 3F/ 29 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 1 4F 5F/ 30 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 1 4F 3D/ 31 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 8 2P 1D/ 32 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 1G/ 33 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 5G/ 34 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 3S/ 35 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 8 2P 3P/ 36 24555576 == 3S2 3P5 3D7 1 2P 2P/ 7 2D 3F/ 37 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 4 2G 1F/ 38 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 5D/ 39 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 1D/ 40 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 1P/ 41 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 5D/ 42 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 8 2P 3D/ 43 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 3I/ 44 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 3D/ 45 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 3F/ 46 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 8 2P 1P/ 47 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 3G/ 48 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 3P/ 49 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 5P/ 50 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 4 2G 3G/ 51 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 3F/ 52 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 3H/ 53 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 3F/ 54 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 3D/ 55 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 3D/ 56 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 3G/ 57 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 3P/ 58 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 3G/ 59 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 3P/ 60 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 1F/ 61 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 1I/ 62 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 3S/ 63 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 1F/ 64 24555576 == 3S2 3P5 3D7 1 2P 2P/ 7 2D 1D/ 65 56518 == 3D5 4P1 * 5 4P 4P/ 1 2P 5S/ 66 56518 == 3D5 4P1 * 14 2D 2D/ 1 2P 1F/ 67 56518 == 3D5 4P1 * 11 2F 2F/ 1 2P 1G/ 68 56518 == 3D5 4P1 * 14 2D 2D/ 1 2P 1P/ 69 56518 == 3D5 4P1 * 5 4P 4P/ 1 2P 3S/ 70 56518 == 3D5 4P1 * 2 4G 4G/ 1 2P 3F/ 71 56518 == 3D5 4P1 * 2 4G 4G/ 1 2P 3H/ 72 56518 == 3D5 4P1 6 2I 2I/ 1 2P 3H/ 73 56518 == 3D5 4P1 5 4P 4P/ 1 2P 5P/ 74 56518 == 3D5 4P1 4 4D 4D/ 1 2P 3F/ 75 56518 == 3D5 4P1 14 2D 2D/ 1 2P 3D/ 76 56518 == 3D5 4P1 3 4F 4F/ 1 2P 3G/ 77 56518 == 3D5 4P1 * 2 4G 4G/ 1 2P 5F/ 78 56518 == 3D5 4P1 4 4D 4D/ 1 2P 5P/ 79 56518 == 3D5 4P1 14 2D 2D/ 1 2P 3F/ 80 56518 == 3D5 4P1 6 2I 2I/ 1 2P 3K/ 81 56518 == 3D5 4P1 * 12 2D 2D/ 1 2P 1F/ 82 56518 == 3D5 4P1 * 6 2I 2I/ 1 2P 1K/ 83 56518 == 3D5 4P1 * 7 2H 2H/ 1 2P 1I/ 84 56518 == 3D5 4P1 10 2F 2F/ 1 2P 1D/ 85 56518 == 3D5 4P1 * 2 4G 4G/ 1 2P 5G/ 86 56518 == 3D5 4P1 4 4D 4D/ 1 2P 5D/ 87 56518 == 3D5 4P1 8 2G 2G/ 1 2P 3F/ 88 56518 == 3D5 4P1 * 9 2G 2G/ 1 2P 1H/ 89 56518 == 3D5 4P1 * 6 2I 2I/ 1 2P 3I/ 90 56518 == 3D5 4P1 11 2F 2F/ 1 2P 1D/ 91 56518 == 3D5 4P1 * 15 2P 2P/ 1 2P 3S/ 92 56518 == 3D5 4P1 3 4F 4F/ 1 2P 5D/ 93 56518 == 3D5 4P1 10 2F 2F/ 1 2P 3D/ 94 56518 == 3D5 4P1 2 4G 4G/ 1 2P 5H/ 95 56518 == 3D5 4P1 * 2 4G 4G/ 1 2P 3G/ 96 56518 == 3D5 4P1 11 2F 2F/ 1 2P 3D/ 97 56518 == 3D5 4P1 8 2G 2G/ 1 2P 3H/ 98 56518 == 3D5 4P1 1 6S 6S/ 1 2P 5P/ 99 56518 == 3D5 4P1 1 6S 6S/ 1 2P 7P/ 100 56518 == 3D5 4P1 * 13 2D 2D/ 1 2P 1F/ 101 56518 == 3D5 4P1 * 14 2D 2D/ 1 2P 1D/ 102 56518 == 3D5 4P1 3 4F 4F/ 1 2P 3F/ 103 56518 == 3D5 4P1 7 2H 2H/ 1 2P 3G/ 104 56518 == 3D5 4P1 4 4D 4D/ 1 2P 3D/ 105 56518 == 3D5 4P1 11 2F 2F/ 1 2P 3G/ 106 56518 == 3D5 4P1 9 2G 2G/ 1 2P 3F/ 107 56518 == 3D5 4P1 * 4 4D 4D/ 1 2P 3P/ 108 56518 == 3D5 4P1 4 4D 4D/ 1 2P 5F/ 109 56518 == 3D5 4P1 * 15 2P 2P/ 1 2P 3P/ 110 56518 == 3D5 4P1 11 2F 2F/ 1 2P 3F/ 111 56518 == 3D5 4P1 7 2H 2H/ 1 2P 3I/ 112 56518 == 3D5 4P1 15 2P 2P/ 1 2P 3D/ 113 56518 == 3D5 4P1 * 13 2D 2D/ 1 2P 3F/ 114 56518 == 3D5 4P1 9 2G 2G/ 1 2P 3H/ 115 56518 == 3D5 4P1 16 2S 2S/ 1 2P 3P/ 116 56518 == 3D5 4P1 3 4F 4F/ 1 2P 5G/ 117 56519 == 3D5 4D1 * 14 2D 2D/ 1 2D 1P/ 118 56518 == 3D5 4P1 3 4F 4F/ 1 2P 3D/ 119 56518 == 3D5 4P1 10 2F 2F/ 1 2P 3G/ 120 56518 == 3D5 4P1 * 13 2D 2D/ 1 2P 3P/ 121 56518 == 3D5 4P1 6 2I 2I/ 1 2P 1H/ 122 56518 == 3D5 4P1 6 2I 2I/ 1 2P 1I/ 123 56518 == 3D5 4P1 12 2D 2D/ 1 2P 3P/ 124 56518 == 3D5 4P1 7 2H 2H/ 1 2P 3H/ 125 56518 == 3D5 4P1 * 3 4F 4F/ 1 2P 5F/ 126 56518 == 3D5 4P1 9 2G 2G/ 1 2P 3G/ 127 56518 == 3D5 4P1 5 4P 4P/ 1 2P 5D/ 128 56518 == 3D5 4P1 * 13 2D 2D/ 1 2P 3D/ 129 56519 == 3D5 4D1 * 10 2F 2F/ 1 2D 1H/ 130 56518 == 3D5 4P1 8 2G 2G/ 1 2P 3G/ 131 56518 == 3D5 4P1 8 2G 2G/ 1 2P 1G/ 132 56518 == 3D5 4P1 8 2G 2G/ 1 2P 1F/ 133 56518 == 3D5 4P1 14 2D 2D/ 1 2P 3P/ 134 56518 == 3D5 4P1 5 4P 4P/ 1 2P 3D/ 135 56519 == 3D5 4D1 5 4P 4P/ 1 2D 5D/ 136 56518 == 3D5 4P1 15 2P 2P/ 1 2P 1S/ 137 56518 == 3D5 4P1 15 2P 2P/ 1 2P 1P/ 138 56518 == 3D5 4P1 12 2D 2D/ 1 2P 1P/ 139 56518 == 3D5 4P1 12 2D 2D/ 1 2P 3F/ 140 56518 == 3D5 4P1 12 2D 2D/ 1 2P 3D/ 141 56518 == 3D5 4P1 * 10 2F 2F/ 1 2P 3F/ 142 56518 == 3D5 4P1 10 2F 2F/ 1 2P 1F/ 143 56518 == 3D5 4P1 7 2H 2H/ 1 2P 1H/ 144 56519 == 3D5 4D1 5 4P 4P/ 1 2D 3P/ 145 56518 == 3D5 4P1 7 2H 2H/ 1 2P 1G/ 146 56519 == 3D5 4D1 11 2F 2F/ 1 2D 1H/ 147 56518 == 3D5 4P1 * 15 2P 2P/ 1 2P 1D/ 148 56518 == 3D5 4P1 * 9 2G 2G/ 1 2P 1G/ 149 56519 == 3D5 4D1 * 10 2F 2F/ 1 2D 1F/ 150 56518 == 3D5 4P1 9 2G 2G/ 1 2P 1F/ 151 56518 == 3D5 4P1 13 2D 2D/ 1 2P 1D/ 152 56518 == 3D5 4P1 5 4P 4P/ 1 2P 3P/ 153 56518 == 3D5 4P1 13 2D 2D/ 1 2P 1P/ 154 56518 == 3D5 4P1 * 11 2F 2F/ 1 2P 1F/ 155 56518 == 3D5 4P1 * 8 2G 2G/ 1 2P 1H/ 156 56519 == 3D5 4D1 * 11 2F 2F/ 1 2D 3P/ 157 56519 == 3D5 4D1 * 6 2I 2I/ 1 2D 1L/ 158 56519 == 3D5 4D1 7 2H 2H/ 1 2D 1H/ 159 56519 == 3D5 4D1 1 6S 6S/ 1 2D 7D/ 160 56519 == 3D5 4D1 4 4D 4D/ 1 2D 5S/ 161 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 3I/ 162 56518 == 3D5 4P1 16 2S 2S/ 1 2P 1P/ 163 56519 == 3D5 4D1 * 6 2I 2I/ 1 2D 1K/ 164 56519 == 3D5 4D1 7 2H 2H/ 1 2D 1F/ 165 56519 == 3D5 4D1 10 2F 2F/ 1 2D 1P/ 166 56519 == 3D5 4D1 * 10 2F 2F/ 1 2D 3F/ 167 56519 == 3D5 4D1 4 4D 4D/ 1 2D 5F/ 168 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 5G/ 169 56519 == 3D5 4D1 11 2F 2F/ 1 2D 3G/ 170 56519 == 3D5 4D1 3 4F 4F/ 1 2D 3G/ 171 56519 == 3D5 4D1 10 2F 2F/ 1 2D 1D/ 172 56519 == 3D5 4D1 1 6S 6S/ 1 2D 5D/ 173 56519 == 3D5 4D1 7 2H 2H/ 1 2D 3F/ 174 56519 == 3D5 4D1 * 13 2D 2D/ 1 2D 1D/ 175 56519 == 3D5 4D1 4 4D 4D/ 1 2D 5P/ 176 56519 == 3D5 4D1 * 11 2F 2F/ 1 2D 1F/ 177 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 3D/ 178 56519 == 3D5 4D1 4 4D 4D/ 1 2D 3G/ 179 56519 == 3D5 4D1 9 2G 2G/ 1 2D 3D/ 180 56519 == 3D5 4D1 * 13 2D 2D/ 1 2D 1G/ 181 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 3H/ 182 56519 == 3D5 4D1 5 4P 4P/ 1 2D 5P/ 183 56519 == 3D5 4D1 10 2F 2F/ 1 2D 3P/ 184 56519 == 3D5 4D1 2 4G 4G/ 1 2D 5H/ 185 56519 == 3D5 4D1 10 2F 2F/ 1 2D 3H/ 186 56519 == 3D5 4D1 3 4F 4F/ 1 2D 5F/ 187 56519 == 3D5 4D1 11 2F 2F/ 1 2D 1D/ 188 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 3F/ 189 56519 == 3D5 4D1 4 4D 4D/ 1 2D 5G/ 190 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 5I/ 191 56519 == 3D5 4D1 6 2I 2I/ 1 2D 3L/ 192 56519 == 3D5 4D1 6 2I 2I/ 1 2D 3K/ 193 56519 == 3D5 4D1 * 9 2G 2G/ 1 2D 3F/ 194 56519 == 3D5 4D1 4 4D 4D/ 1 2D 3F/ 195 56518 == 3D5 4P1 * 10 2F 2F/ 1 2P 1G/ 196 56518 == 3D5 4P1 12 2D 2D/ 1 2P 1D/ 197 56519 == 3D5 4D1 3 4F 4F/ 1 2D 5P/ 198 56519 == 3D5 4D1 6 2I 2I/ 1 2D 3I/ 199 56519 == 3D5 4D1 6 2I 2I/ 1 2D 3G/ 200 56519 == 3D5 4D1 7 2H 2H/ 1 2D 3I/ 201 56519 == 3D5 4D1 7 2H 2H/ 1 2D 3G/ 202 56519 == 3D5 4D1 7 2H 2H/ 1 2D 3K/ 203 56519 == 3D5 4D1 14 2D 2D/ 1 2D 3G/ 204 56519 == 3D5 4D1 4 4D 4D/ 1 2D 3S/ 205 56519 == 3D5 4D1 9 2G 2G/ 1 2D 3I/ 206 5651A == 3D5 4F1 * 14 2D 2D/ 1 2F 1H/ 207 56519 == 3D5 4D1 * 3 4F 4F/ 1 2D 5D/ 208 56519 == 3D5 4D1 * 11 2F 2F/ 1 2D 3F/ 209 56519 == 3D5 4D1 6 2I 2I/ 1 2D 1H/ 210 56519 == 3D5 4D1 3 4F 4F/ 1 2D 3P/ 211 56519 == 3D5 4D1 2 4G 4G/ 1 2D 5F/ 212 56519 == 3D5 4D1 6 2I 2I/ 1 2D 1G/ 213 56519 == 3D5 4D1 5 4P 4P/ 1 2D 3D/ 214 56519 == 3D5 4D1 * 11 2F 2F/ 1 2D 3D/ 215 56519 == 3D5 4D1 5 4P 4P/ 1 2D 5F/ 216 56519 == 3D5 4D1 2 4G 4G/ 1 2D 5D/ 217 56519 == 3D5 4D1 14 2D 2D/ 1 2D 1S/ 218 56519 == 3D5 4D1 * 13 2D 2D/ 1 2D 3P/ 219 56519 == 3D5 4D1 * 14 2D 2D/ 1 2D 1D/ 220 56519 == 3D5 4D1 8 2G 2G/ 1 2D 3I/ 221 56519 == 3D5 4D1 * 9 2G 2G/ 1 2D 1H/ 222 56519 == 3D5 4D1 * 14 2D 2D/ 1 2D 1G/ 223 56519 == 3D5 4D1 8 2G 2G/ 1 2D 3H/ 224 56519 == 3D5 4D1 * 14 2D 2D/ 1 2D 3P/ 225 56519 == 3D5 4D1 3 4F 4F/ 1 2D 5H/ 226 56519 == 3D5 4D1 * 4 4D 4D/ 1 2D 3P/ 227 56519 == 3D5 4D1 8 2G 2G/ 1 2D 3D/ 228 56519 == 3D5 4D1 * 8 2G 2G/ 1 2D 1I/ 229 56519 == 3D5 4D1 15 2P 2P/ 1 2D 1F/ 230 56519 == 3D5 4D1 * 6 2I 2I/ 1 2D 1I/ 231 56519 == 3D5 4D1 * 3 4F 4F/ 1 2D 5G/ 232 56519 == 3D5 4D1 * 6 2I 2I/ 1 2D 3H/ 233 56519 == 3D5 4D1 * 8 2G 2G/ 1 2D 3G/ 234 56519 == 3D5 4D1 4 4D 4D/ 1 2D 5D/ 235 56519 == 3D5 4D1 * 14 2D 2D/ 1 2D 3S/ 236 56519 == 3D5 4D1 15 2P 2P/ 1 2D 3F/ 237 56519 == 3D5 4D1 12 2D 2D/ 1 2D 1G/ 238 56519 == 3D5 4D1 15 2P 2P/ 1 2D 3D/ 239 56519 == 3D5 4D1 5 4P 4P/ 1 2D 3F/ 240 56519 == 3D5 4D1 * 10 2F 2F/ 1 2D 3D/ 241 56519 == 3D5 4D1 * 4 4D 4D/ 1 2D 3D/ 242 56519 == 3D5 4D1 8 2G 2G/ 1 2D 1F/ 243 56519 == 3D5 4D1 * 13 2D 2D/ 1 2D 3G/ 244 56519 == 3D5 4D1 11 2F 2F/ 1 2D 3H/ 245 56519 == 3D5 4D1 12 2D 2D/ 1 2D 3F/ 246 56519 == 3D5 4D1 3 4F 4F/ 1 2D 3D/ 247 56519 == 3D5 4D1 * 8 2G 2G/ 1 2D 1G/ 248 56519 == 3D5 4D1 8 2G 2G/ 1 2D 3F/ 249 56519 == 3D5 4D1 8 2G 2G/ 1 2D 1D/ 250 56519 == 3D5 4D1 12 2D 2D/ 1 2D 3G/ 251 56519 == 3D5 4D1 15 2P 2P/ 1 2D 1P/ 252 56519 == 3D5 4D1 14 2D 2D/ 1 2D 3F/ 253 56519 == 3D5 4D1 12 2D 2D/ 1 2D 3D/ 254 56519 == 3D5 4D1 12 2D 2D/ 1 2D 1P/ 255 56519 == 3D5 4D1 14 2D 2D/ 1 2D 3D/ 256 56519 == 3D5 4D1 9 2G 2G/ 1 2D 3H/ 257 56519 == 3D5 4D1 * 2 4G 4G/ 1 2D 3G/ 258 56519 == 3D5 4D1 7 2H 2H/ 1 2D 1K/ 259 56519 == 3D5 4D1 13 2D 2D/ 1 2D 3D/ 260 56519 == 3D5 4D1 16 2S 2S/ 1 2D 3D/ 261 56519 == 3D5 4D1 * 15 2P 2P/ 1 2D 1D/ 262 5651A == 3D5 4F1 * 10 2F 2F/ 1 2F 3F/ 263 56519 == 3D5 4D1 * 9 2G 2G/ 1 2D 1I/ 264 56519 == 3D5 4D1 9 2G 2G/ 1 2D 3G/ 265 56519 == 3D5 4D1 7 2H 2H/ 1 2D 3H/ 266 56519 == 3D5 4D1 * 3 4F 4F/ 1 2D 3H/ 267 56519 == 3D5 4D1 15 2P 2P/ 1 2D 3P/ 268 56519 == 3D5 4D1 * 13 2D 2D/ 1 2D 3S/ 269 56519 == 3D5 4D1 * 3 4F 4F/ 1 2D 3F/ 270 5651A == 3D5 4F1 5 4P 4P/ 1 2F 3F/ 271 56519 == 3D5 4D1 7 2H 2H/ 1 2D 1I/ 272 56519 == 3D5 4D1 10 2F 2F/ 1 2D 3G/ 273 56519 == 3D5 4D1 12 2D 2D/ 1 2D 3P/ 274 5651A == 3D5 4F1 10 2F 2F/ 1 2F 1I/ 275 56519 == 3D5 4D1 10 2F 2F/ 1 2D 1G/ 276 56519 == 3D5 4D1 * 14 2D 2D/ 1 2D 1F/ 277 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 1I/ 278 5651A == 3D5 4F1 3 4F 4F/ 1 2F 5S/ 279 56519 == 3D5 4D1 9 2G 2G/ 1 2D 1G/ 280 56519 == 3D5 4D1 9 2G 2G/ 1 2D 1D/ 281 56519 == 3D5 4D1 * 13 2D 2D/ 1 2D 1F/ 282 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 5H/ 283 5651A == 3D5 4F1 * 6 2I 2I/ 1 2F 1L/ 284 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 3I/ 285 56519 == 3D5 4D1 11 2F 2F/ 1 2D 1G/ 286 5651A == 3D5 4F1 7 2H 2H/ 1 2F 1I/ 287 56519 == 3D5 4D1 * 8 2G 2G/ 1 2D 1H/ 288 56519 == 3D5 4D1 13 2D 2D/ 1 2D 1P/ 289 56519 == 3D5 4D1 13 2D 2D/ 1 2D 3F/ 290 5651A == 3D5 4F1 4 4D 4D/ 1 2F 5P/ 291 5651A == 3D5 4F1 10 2F 2F/ 1 2F 1P/ 292 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 3D/ 293 5651A == 3D5 4F1 1 6S 6S/ 1 2F 5F/ 294 5651A == 3D5 4F1 1 6S 6S/ 1 2F 7F/ 295 5651A == 3D5 4F1 * 9 2G 2G/ 1 2F 1H/ 296 56519 == 3D5 4D1 13 2D 2D/ 1 2D 1S/ 297 5651A == 3D5 4F1 5 4P 4P/ 1 2F 5F/ 298 5651A == 3D5 4F1 10 2F 2F/ 1 2F 3S/ 299 5651A == 3D5 4F1 * 13 2D 2D/ 1 2F 3H/ 300 5651A == 3D5 4F1 13 2D 2D/ 1 2F 1D/ 301 5651A == 3D5 4F1 * 10 2F 2F/ 1 2F 3D/ 302 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 1P/ 303 5651A == 3D5 4F1 13 2D 2D/ 1 2F 1G/ 304 5651A == 3D5 4F1 13 2D 2D/ 1 2F 1P/ 305 56519 == 3D5 4D1 7 2H 2H/ 1 2D 1G/ 306 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 1F/ 307 56519 == 3D5 4D1 * 9 2G 2G/ 1 2D 1F/ 308 5651A == 3D5 4F1 4 4D 4D/ 1 2F 5H/ 309 56519 == 3D5 4D1 16 2S 2S/ 1 2D 1D/ 310 5651A == 3D5 4F1 * 14 2D 2D/ 1 2F 3D/ 311 5651A == 3D5 4F1 7 2H 2H/ 1 2F 3G/ 312 5651A == 3D5 4F1 * 5 4P 4P/ 1 2F 3G/ 313 5651A == 3D5 4F1 * 4 4D 4D/ 1 2F 5D/ 314 5651A == 3D5 4F1 2 4G 4G/ 1 2F 5K/ 315 5651A == 3D5 4F1 4 4D 4D/ 1 2F 5G/ 316 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 3G/ 317 56519 == 3D5 4D1 12 2D 2D/ 1 2D 1S/ 318 5651A == 3D5 4F1 4 4D 4D/ 1 2F 3P/ 319 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 3K/ 320 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 3P/ 321 5651A == 3D5 4F1 2 4G 4G/ 1 2F 5F/ 322 5651A == 3D5 4F1 2 4G 4G/ 1 2F 5I/ 323 5651A == 3D5 4F1 11 2F 2F/ 1 2F 3H/ 324 5651A == 3D5 4F1 11 2F 2F/ 1 2F 3G/ 325 5651A == 3D5 4F1 * 6 2I 2I/ 1 2F 3L/ 326 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 3P/ 327 5651A == 3D5 4F1 2 4G 4G/ 1 2F 3F/ 328 56519 == 3D5 4D1 * 11 2F 2F/ 1 2D 1P/ 329 5651A == 3D5 4F1 6 2I 2I/ 1 2F 3F/ 330 5651A == 3D5 4F1 * 7 2H 2H/ 1 2F 3H/ 331 5651A == 3D5 4F1 6 2I 2I/ 1 2F 3K/ 332 5651A == 3D5 4F1 6 2I 2I/ 1 2F 3M/ 333 5651A == 3D5 4F1 9 2G 2G/ 1 2F 3P/ 334 5651A == 3D5 4F1 6 2I 2I/ 1 2F 1M/ 335 5651A == 3D5 4F1 * 5 4P 4P/ 1 2F 5G/ 336 5651A == 3D5 4F1 2 4G 4G/ 1 2F 3H/ 337 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 5G/ 338 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 5I/ 339 56519 == 3D5 4D1 * 12 2D 2D/ 1 2D 3S/ 340 5651A == 3D5 4F1 14 2D 2D/ 1 2F 3H/ 341 5651A == 3D5 4F1 5 4P 4P/ 1 2F 3D/ 342 5651A == 3D5 4F1 4 4D 4D/ 1 2F 5F/ 343 5651A == 3D5 4F1 7 2H 2H/ 1 2F 3L/ 344 5651A == 3D5 4F1 3 4F 4F/ 1 2F 5G/ 345 5651A == 3D5 4F1 3 4F 4F/ 1 2F 3H/ 346 5651A == 3D5 4F1 * 7 2H 2H/ 1 2F 3K/ 347 5651A == 3D5 4F1 2 4G 4G/ 1 2F 3D/ 348 5651A == 3D5 4F1 6 2I 2I/ 1 2F 1H/ 349 56519 == 3D5 4D1 * 12 2D 2D/ 1 2D 1F/ 350 56519 == 3D5 4D1 12 2D 2D/ 1 2D 1D/ 351 5651A == 3D5 4F1 6 2I 2I/ 1 2F 3G/ 352 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 3I/ 353 5651A == 3D5 4F1 11 2F 2F/ 1 2F 1S/ 354 5651A == 3D5 4F1 7 2H 2H/ 1 2F 3D/ 355 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 5F/ 356 5651A == 3D5 4F1 3 4F 4F/ 1 2F 5P/ 357 5651A == 3D5 4F1 6 2I 2I/ 1 2F 1K/ 358 5651A == 3D5 4F1 * 15 2P 2P/ 1 2F 3G/ 359 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 3P/ 360 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 3F/ 361 5651A == 3D5 4F1 6 2I 2I/ 1 2F 1F/ 362 5651A == 3D5 4F1 4 4D 4D/ 1 2F 3G/ 363 5651A == 3D5 4F1 6 2I 2I/ 1 2F 1I/ 364 5651A == 3D5 4F1 * 2 4G 4G/ 1 2F 5P/ 365 5651A == 3D5 4F1 * 7 2H 2H/ 1 2F 3F/ 366 5651A == 3D5 4F1 * 9 2G 2G/ 1 2F 1G/ 367 5651A == 3D5 4F1 9 2G 2G/ 1 2F 1F/ 368 5651A == 3D5 4F1 13 2D 2D/ 1 2F 3P/ 369 5651A == 3D5 4F1 14 2D 2D/ 1 2F 1P/ 370 5651A == 3D5 4F1 14 2D 2D/ 1 2F 1F/ 371 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 5H/ 372 5651A == 3D5 4F1 * 4 4D 4D/ 1 2F 3F/ 373 5651A == 3D5 4F1 8 2G 2G/ 1 2F 1K/ 374 5651A == 3D5 4F1 10 2F 2F/ 1 2F 3H/ 375 5651A == 3D5 4F1 * 8 2G 2G/ 1 2F 1I/ 376 5651A == 3D5 4F1 * 9 2G 2G/ 1 2F 3H/ 377 5651A == 3D5 4F1 9 2G 2G/ 1 2F 3F/ 378 5651A == 3D5 4F1 8 2G 2G/ 1 2F 3H/ 379 5651A == 3D5 4F1 * 10 2F 2F/ 1 2F 3P/ 380 5651A == 3D5 4F1 2 4G 4G/ 1 2F 5D/ 381 5651A == 3D5 4F1 * 6 2I 2I/ 1 2F 3H/ 382 5651A == 3D5 4F1 13 2D 2D/ 1 2F 3D/ 383 5651A == 3D5 4F1 8 2G 2G/ 1 2F 3I/ 384 5651A == 3D5 4F1 * 6 2I 2I/ 1 2F 3I/ 385 5651A == 3D5 4F1 3 4F 4F/ 1 2F 3F/ 386 5651A == 3D5 4F1 16 2S 2S/ 1 2F 3F/ 387 5651A == 3D5 4F1 8 2G 2G/ 1 2F 1D/ 388 5651A == 3D5 4F1 3 4F 4F/ 1 2F 3S/ 389 5651A == 3D5 4F1 * 14 2D 2D/ 1 2F 3P/ 390 5651A == 3D5 4F1 8 2G 2G/ 1 2F 3F/ 391 5651A == 3D5 4F1 * 7 2H 2H/ 1 2F 3I/ 392 5651A == 3D5 4F1 8 2G 2G/ 1 2F 1H/ 393 5651A == 3D5 4F1 8 2G 2G/ 1 2F 1F/ 394 5651A == 3D5 4F1 9 2G 2G/ 1 2F 3K/ 395 5651A == 3D5 4F1 8 2G 2G/ 1 2F 3P/ 396 5651A == 3D5 4F1 11 2F 2F/ 1 2F 3I/ 397 5651A == 3D5 4F1 8 2G 2G/ 1 2F 1G/ 398 5651A == 3D5 4F1 * 4 4D 4D/ 1 2F 3H/ 399 5651A == 3D5 4F1 5 4P 4P/ 1 2F 5D/ 400 5651A == 3D5 4F1 13 2D 2D/ 1 2F 3G/ 401 5651A == 3D5 4F1 8 2G 2G/ 1 2F 3K/ 402 5651A == 3D5 4F1 15 2P 2P/ 1 2F 1G/ 403 5651A == 3D5 4F1 * 4 4D 4D/ 1 2F 3D/ 404 5651A == 3D5 4F1 12 2D 2D/ 1 2F 1H/ 405 5651A == 3D5 4F1 8 2G 2G/ 1 2F 3D/ 406 5651A == 3D5 4F1 3 4F 4F/ 1 2F 5D/ 407 5651A == 3D5 4F1 * 8 2G 2G/ 1 2F 3G/ 408 5651A == 3D5 4F1 12 2D 2D/ 1 2F 1G/ 409 5651A == 3D5 4F1 8 2G 2G/ 1 2F 1P/ 410 5651A == 3D5 4F1 * 14 2D 2D/ 1 2F 3F/ 411 5651A == 3D5 4F1 9 2G 2G/ 1 2F 3G/ 412 5651A == 3D5 4F1 15 2P 2P/ 1 2F 1D/ 413 5651A == 3D5 4F1 12 2D 2D/ 1 2F 3D/ 414 5651A == 3D5 4F1 12 2D 2D/ 1 2F 1D/ 415 5651A == 3D5 4F1 11 2F 2F/ 1 2F 3D/ 416 5651A == 3D5 4F1 * 3 4F 4F/ 1 2F 3G/ 417 5651A == 3D5 4F1 15 2P 2P/ 1 2F 1F/ 418 5651A == 3D5 4F1 9 2G 2G/ 1 2F 3I/ 419 5651A == 3D5 4F1 10 2F 2F/ 1 2F 3G/ 420 5651A == 3D5 4F1 12 2D 2D/ 1 2F 3F/ 421 5651A == 3D5 4F1 7 2H 2H/ 1 2F 1L/ 422 5651A == 3D5 4F1 10 2F 2F/ 1 2F 3I/ 423 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 3S/ 424 5651A == 3D5 4F1 9 2G 2G/ 1 2F 3D/ 425 5651A == 3D5 4F1 15 2P 2P/ 1 2F 3D/ 426 5651A == 3D5 4F1 * 9 2G 2G/ 1 2F 1K/ 427 5651A == 3D5 4F1 * 6 2I 2I/ 1 2F 1G/ 428 5651A == 3D5 4F1 7 2H 2H/ 1 2F 1D/ 429 5651A == 3D5 4F1 14 2D 2D/ 1 2F 3G/ 430 5651A == 3D5 4F1 10 2F 2F/ 1 2F 1G/ 431 5651A == 3D5 4F1 * 13 2D 2D/ 1 2F 1H/ 432 5651A == 3D5 4F1 10 2F 2F/ 1 2F 1F/ 433 5651A == 3D5 4F1 10 2F 2F/ 1 2F 1S/ 434 5651A == 3D5 4F1 * 15 2P 2P/ 1 2F 3F/ 435 5651A == 3D5 4F1 9 2G 2G/ 1 2F 1I/ 436 5651A == 3D5 4F1 12 2D 2D/ 1 2F 3P/ 437 5651A == 3D5 4F1 12 2D 2D/ 1 2F 3H/ 438 5651A == 3D5 4F1 * 14 2D 2D/ 1 2F 1G/ 439 5651A == 3D5 4F1 13 2D 2D/ 1 2F 3F/ 440 5651A == 3D5 4F1 7 2H 2H/ 1 2F 1K/ 441 5651A == 3D5 4F1 7 2H 2H/ 1 2F 1F/ 442 5651A == 3D5 4F1 * 11 2F 2F/ 1 2F 1D/ 443 5651A == 3D5 4F1 11 2F 2F/ 1 2F 1G/ 444 5651A == 3D5 4F1 * 14 2D 2D/ 1 2F 1D/ 445 5651A == 3D5 4F1 13 2D 2D/ 1 2F 1F/ 446 5651A == 3D5 4F1 16 2S 2S/ 1 2F 1F/ 447 5651A == 3D5 4F1 11 2F 2F/ 1 2F 1H/ 448 5651A == 3D5 4F1 * 7 2H 2H/ 1 2F 1H/ 449 5651A == 3D5 4F1 7 2H 2H/ 1 2F 1G/ 450 5651A == 3D5 4F1 * 12 2D 2D/ 1 2F 3G/ 451 5651A == 3D5 4F1 9 2G 2G/ 1 2F 1P/ 452 5651A == 3D5 4F1 9 2G 2G/ 1 2F 1D/ 453 5651A == 3D5 4F1 12 2D 2D/ 1 2F 1F/ 454 5651A == 3D5 4F1 12 2D 2D/ 1 2F 1P/ 455 5651A == 3D5 4F1 * 10 2F 2F/ 1 2F 1D/ 456 5651A == 3D5 4F1 * 10 2F 2F/ 1 2F 1H/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 Map to LS levels : 2 1 13 3 3 3 8 6 2 5 7 7 4 5 9 3 3 6 8 6 10 2 5 11 7 9 9 12 14 13 8 13 15 16 33 17 29 42 36 35 18 30 20 49 24 57 33 52 19 41 30 41 59 21 43 29 20 38 24 22 23 20 53 29 44 38 38 47 51 25 48 28 54 48 26 47 54 45 27 24 33 28 28 38 43 58 31 59 56 32 34 50 51 53 55 50 45 37 55 39 44 40 57 36 46 29 38 56 35 42 48 60 29 56 49 52 41 35 36 61 52 58 51 45 55 47 62 63 64 33 42 33 41 44 43 58 41 54 53 49 57 50 59 30 65 66 70 95 85 74 108 86 71 72 70 76 75 85 109 67 115 96 113 68 79 93 73 69 99 94 94 78 89 80 77 77 108 80 116 73 72 86 105 86 111 92 114 116 125 79 126 75 127 97 127 87 97 87 71 98 141 77 109 112 123 81 85 94 78 74 82 83 77 103 104 124 84 89 71 107 106 76 107 102 104 92 118 88 90 110 91 102 73 86 120 93 119 128 100 111 101 125 103 128 106 114 113 120 105 92 115 112 99 99 98 98 135 139 108 135 85 86 94 140 185 117 85 104 107 94 72 70 95 78 95 80 89 74 152 127 134 121 122 108 110 110 96 92 116 125 124 103 106 126 105 125 133 116 76 118 75 133 102 79 127 119 166 130 129 87 130 134 144 135 97 130 131 182 132 77 119 136 226 112 109 137 139 133 140 138 159 159 166 172 234 170 127 167 178 152 200 134 168 167 202 93 189 177 184 201 179 116 234 218 205 118 124 108 111 92 141 120 167 156 243 142 143 260 145 146 186 147 159 213 207 144 114 172 169 148 149 150 126 151 128 125 113 153 240 161 173 154 155 188 185 96 161 157 194 253 250 211 167 158 173 160 156 168 162 269 115 178 163 164 165 193 175 170 181 210 183 183 241 208 189 194 161 169 140 215 207 171 139 123 224 123 181 174 218 176 159 177 180 197 184 168 190 245 175 184 198 190 168 191 192 168 190 199 189 175 192 191 244 169 135 225 215 187 186 200 202 197 256 205 255 203 186 186 203 172 159 195 172 225 231 196 152 172 231 141 215 216 216 220 312 236 189 177 184 211 297 167 190 262 198 211 156 204 181 190 184 257 206 216 239 234 232 223 199 179 326 310 209 198 191 188 192 238 212 244 215 182 213 214 214 220 223 199 239 284 264 313 252 266 214 225 217 186 219 201 227 226 221 216 246 231 222 179 301 231 193 203 225 246 170 197 270 232 297 173 248 259 265 210 228 227 233 238 267 229 230 272 267 236 341 208 233 193 235 237 248 224 224 233 166 220 255 223 242 227 247 182 249 251 238 252 272 236 188 250 253 254 201 245 240 273 258 194 135 261 208 294 282 289 263 301 294 294 256 293 207 264 144 252 215 294 240 391 262 207 266 321 315 419 282 239 232 346 213 293 268 335 273 314 207 270 265 343 260 211 290 308 330 345 271 225 318 324 241 313 200 241 189 274 368 257 246 333 202 338 231 311 257 319 379 276 275 337 314 234 265 308 293 226 292 259 342 262 335 282 178 218 315 358 277 342 205 278 311 380 371 352 279 280 398 315 344 264 290 256 374 281 283 285 329 259 269 299 365 316 286 322 243 287 288 211 255 289 291 354 243 295 406 327 312 386 248 323 282 296 372 244 292 299 216 316 385 325 298 210 330 377 308 300 267 341 260 320 342 302 303 284 304 320 245 292 305 306 307 376 309 371 299 289 382 253 368 400 250 355 317 273 310 389 294 294 322 314 340 328 290 322 293 331 321 294 322 337 332 282 314 331 308 337 336 266 325 308 332 323 234 322 310 315 321 318 380 297 284 269 362 372 334 337 336 293 335 324 314 344 319 394 326 347 339 331 332 396 418 323 316 318 329 380 185 315 326 343 325 313 396 319 340 335 270 347 321 399 321 351 356 348 362 381 349 364 351 364 350 384 329 338 272 410 353 344 385 398 336 338 403 403 381 351 389 342 371 360 327 416 352 347 324 384 338 424 346 355 355 357 333 355 359 411 376 356 415 344 327 360 311 320 340 406 359 297 345 361 377 394 363 429 366 356 355 378 416 367 401 360 369 383 406 370 359 415 378 429 373 375 354 411 401 395 407 301 378 405 383 383 390 395 407 405 388 387 410 390 392 393 397 390 183 425 425 434 358 413 436 436 402 420 404 437 408 358 420 409 412 413 450 414 399 399 417 399 374 344 335 422 399 312 413 421 297 423 422 422 379 313 346 380 338 426 427 337 428 374 406 343 330 400 371 382 391 430 364 342 362 381 431 439 365 418 394 432 400 424 433 365 435 410 384 418 401 380 424 345 438 379 391 415 352 407 386 377 411 389 354 440 372 382 439 371 376 441 442 396 439 405 443 385 444 445 395 333 446 434 447 448 449 434 451 386 437 425 452 420 406 437 450 436 453 454 313 398 341 368 419 416 429 455 456 419 450 403 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#adf34_tungsten_w50.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 42148 165078 112141 initially 9701 37726 33162 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Adam Foster Date : 15/05/09 -------------------------------------------------------------------------------- Correct the orbital energy line to insert 0.0 for orbitals not present in the set of configurations. Martin O'Mullane 29-11-2011 -------------------------------------------------------------------------------