arf40_ls#w60.dat
Resolved Specific Ion Data Collections
- Ion
- W60+
- Temperature Range
- 64.11 eV → 9.651 x 104 eV
ADF04
- Filename
- arf40_ls#w60.dat
- Full Path
- adf04/coparf#74/arf40_ls#w60.dat
Download data
- Spontaneous Emission: W+60(i) → W+60(j) + hv
- Electron Impact Excitation: W+60(i) + e → W+60(j) + e
| 24525 1D2.0 | 0.0 cm-1 |
| 24525 3P4.0 | 1251960.0 cm-1 |
| 14535 3D7.0 | 2742200.0 cm-1 |
| 24525 1S0.0 | 3030700.0 cm-1 |
| 24515516 3F10.0 | 3475400.0 cm-1 |
| 24515516 3P4.0 | 3484700.0 cm-1 |
| 14535 5S2.0 | 4082300.0 cm-1 |
| 14535 1D2.0 | 4477800.0 cm-1 |
| 14535 3S1.0 | 4503600.0 cm-1 |
| 24515516 3D7.0 | 4519300.0 cm-1 |
| 24515516 1F3.0 | 4755200.0 cm-1 |
| 24515516 1D2.0 | 5324800.0 cm-1 |
| 24515516 1P1.0 | 5543500.0 cm-1 |
| 14535 3P4.0 | 5973800.0 cm-1 |
| 14525516 3G13.0 | 6251000.0 cm-1 |
| 14525516 5D12.0 | 6329700.0 cm-1 |
| 14525516 3D7.0 | 6412300.0 cm-1 |
| 14525516 5P7.0 | 6498500.0 cm-1 |
| 14525516 3P4.0 | 6634700.0 cm-1 |
| 14525516 1G4.0 | 6760500.0 cm-1 |
| 14525516 1D2.0 | 6764200.0 cm-1 |
| 14525516 1P1.0 | 6856500.0 cm-1 |
| 14525516 1S0.0 | 6898600.0 cm-1 |
| 14525516 5F17.0 | 6957700.0 cm-1 |
| 14525516 3F10.0 | 6969300.0 cm-1 |
| 14525516 3S1.0 | 6973000.0 cm-1 |
| 14525516 1F3.0 | 6989500.0 cm-1 |
| 14535 1P1.0 | 7467900.0 cm-1 |
| 14525516 3D7.0 | 7493500.0 cm-1 |
| 14525516 3F10.0 | 7553300.0 cm-1 |
| 14525516 3P4.0 | 7896700.0 cm-1 |
| 14525516 3P4.0 | 7974200.0 cm-1 |
| 14525516 3F10.0 | 8710000.0 cm-1 |
| 14525516 3D7.0 | 9059400.0 cm-1 |
| 14525516 3D7.0 | 9418800.0 cm-1 |
| 14525516 1D2.0 | 9821900.0 cm-1 |
| 14525516 1F3.0 | 9850900.0 cm-1 |
| 14525516 1P1.0 | 9922500.0 cm-1 |
| 14525516 1D2.0 | 10023500.0 cm-1 |
| 24515517 3P4.0 | 22597300.0 cm-1 |
| 24515518 3S1.0 | 22760300.0 cm-1 |
| 24515519 1F3.0 | 23740300.0 cm-1 |
| 24515518 3D7.0 | 23876300.0 cm-1 |
| 24515517 1P1.0 | 23926300.0 cm-1 |
| 14525518 5S2.0 | 24136300.0 cm-1 |
| 24515518 1D2.0 | 24545300.0 cm-1 |
| 24515518 3P4.0 | 24880300.0 cm-1 |
| 2451551a 3D7.0 | 24910300.0 cm-1 |
| 24515519 3P4.0 | 24920300.0 cm-1 |
| 24515518 1P1.0 | 25663300.0 cm-1 |
| 24515519 3F10.0 | 25810300.0 cm-1 |
| 24515518 1S0.0 | 25818300.0 cm-1 |
| 24515519 3D7.0 | 25925300.0 cm-1 |
| 2451551a 3F10.0 | 25977300.0 cm-1 |
| 14525518 3F10.0 | 26352300.0 cm-1 |
| 2451551a 3G13.0 | 26458300.0 cm-1 |
| 14525518 3D7.0 | 26459300.0 cm-1 |
| 24515519 1D2.0 | 26654300.0 cm-1 |
| 24515519 1P1.0 | 26710300.0 cm-1 |
| 14525518 1P1.0 | 27037300.0 cm-1 |
| 14525518 5D12.0 | 27038300.0 cm-1 |
| 14525519 5P7.0 | 27099300.0 cm-1 |
| 14525518 3P4.0 | 27108300.0 cm-1 |
| 14525518 1D2.0 | 27184300.0 cm-1 |
| 14525518 3D7.0 | 27184300.0 cm-1 |
| 14525518 1F3.0 | 27203300.0 cm-1 |
| 14525518 3S1.0 | 27228300.0 cm-1 |
| 14525518 1D2.0 | 27233300.0 cm-1 |
| 2451551a 1F3.0 | 27287300.0 cm-1 |
| 2451551a 1G4.0 | 27324300.0 cm-1 |
| 2451551a 1D2.0 | 27374300.0 cm-1 |
| 14525519 3P4.0 | 27504300.0 cm-1 |
| 14525519 3S1.0 | 27719300.0 cm-1 |
| 14525519 3G13.0 | 27862300.0 cm-1 |
| 14525519 3F10.0 | 27865300.0 cm-1 |
| 14525519 3D7.0 | 27872300.0 cm-1 |
| 14525519 1D2.0 | 27985300.0 cm-1 |
| 14525519 1P1.0 | 28009300.0 cm-1 |
| 14525519 1S0.0 | 28023300.0 cm-1 |
| 14525519 1F3.0 | 28174300.0 cm-1 |
| 14525519 1F3.0 | 28179300.0 cm-1 |
| 14525519 3P4.0 | 28181300.0 cm-1 |
| 14525519 1G4.0 | 28191300.0 cm-1 |
| 14525519 3F10.0 | 28347300.0 cm-1 |
| 14525519 3P4.0 | 28381300.0 cm-1 |
| 14525519 5F17.0 | 28400300.0 cm-1 |
| 14525518 3P4.0 | 28563300.0 cm-1 |
| 14525518 5P7.0 | 28597300.0 cm-1 |
| 14525518 3D7.0 | 28949300.0 cm-1 |
| 14525518 3P4.0 | 29328300.0 cm-1 |
| 14525518 3P4.0 | 29609300.0 cm-1 |
| 14525518 3S1.0 | 29845300.0 cm-1 |
| 14525518 1S0.0 | 30132300.0 cm-1 |
| 14525518 1P1.0 | 30136300.0 cm-1 |
| 14525519 5D12.0 | 30153300.0 cm-1 |
| 14525519 3D7.0 | 30244300.0 cm-1 |
| 14525518 1P1.0 | 30259300.0 cm-1 |
| 14525519 3F10.0 | 30279300.0 cm-1 |
| 14525519 3D7.0 | 30942300.0 cm-1 |
| 14525519 3D7.0 | 31011300.0 cm-1 |
| 14525519 1D2.0 | 31104300.0 cm-1 |
| 14525519 1P1.0 | 31151300.0 cm-1 |
| 14525519 1D2.0 | 31177300.0 cm-1 |
| 2451551d 1F3.0 | 33382300.0 cm-1 |
| 2451551b 3P4.0 | 33640300.0 cm-1 |
| 2451551e 1G4.0 | 33692300.0 cm-1 |
| 2451551c 3D7.0 | 34149300.0 cm-1 |
| 2451551e 3D7.0 | 34249300.0 cm-1 |
| 1452551c 5S2.0 | 34266300.0 cm-1 |
| 2451551c 3P4.0 | 34476300.0 cm-1 |
| 2451551d 3P4.0 | 34627300.0 cm-1 |
| 2451551b 1P1.0 | 34956300.0 cm-1 |
| 2451551c 3S1.0 | 35259300.0 cm-1 |
| 2451551c 1D2.0 | 35263300.0 cm-1 |
| 2451551d 3F10.0 | 35540300.0 cm-1 |
| 2451551d 3D7.0 | 35652300.0 cm-1 |
| 2451551e 3G13.0 | 35827300.0 cm-1 |
| 2451551c 1P1.0 | 35829300.0 cm-1 |
| 1452551d 5P7.0 | 35866300.0 cm-1 |
| 2451551c 1S0.0 | 35887300.0 cm-1 |
| 2451551d 1D2.0 | 36315300.0 cm-1 |
| 2451551d 1P1.0 | 36340300.0 cm-1 |
| 2451551e 3F10.0 | 36590300.0 cm-1 |
| 2451551e 1F3.0 | 36620300.0 cm-1 |
| 2451551e 1D2.0 | 36653300.0 cm-1 |
| 1452551c 3F10.0 | 36844300.0 cm-1 |
| 1452551c 3P4.0 | 36918300.0 cm-1 |
| 1452551c 1D2.0 | 37134300.0 cm-1 |
| 1452551c 3D7.0 | 37143300.0 cm-1 |
| 1452551c 1P1.0 | 37156300.0 cm-1 |
| 1452551d 3P4.0 | 37215300.0 cm-1 |
| 1452551c 3S1.0 | 37347300.0 cm-1 |
| 1452551c 1F3.0 | 37347300.0 cm-1 |
| 1452551c 5D12.0 | 37409300.0 cm-1 |
| 1452551d 3S1.0 | 37487300.0 cm-1 |
| 1452551c 3D7.0 | 37577300.0 cm-1 |
| 1452551d 3F10.0 | 37586300.0 cm-1 |
| 1452551d 3D7.0 | 37586300.0 cm-1 |
| 1452551d 3G13.0 | 37589300.0 cm-1 |
| 1452551d 1D2.0 | 37620300.0 cm-1 |
| 1452551d 1P1.0 | 37630300.0 cm-1 |
| 1452551d 1S0.0 | 37638300.0 cm-1 |
| 1452551d 1F3.0 | 37820300.0 cm-1 |
| 1452551d 3P4.0 | 37824300.0 cm-1 |
| 1452551d 1F3.0 | 37827300.0 cm-1 |
| 1452551d 1G4.0 | 37833300.0 cm-1 |
| 1452551d 3P4.0 | 38089300.0 cm-1 |
| 1452551d 5F17.0 | 38109300.0 cm-1 |
| 2451551i 1F3.0 | 38580300.0 cm-1 |
| 1452551c 3D7.0 | 38607300.0 cm-1 |
| 1452551c 3P4.0 | 38672300.0 cm-1 |
| 1452551d 3F10.0 | 38691300.0 cm-1 |
| 2451551j 1G4.0 | 38754300.0 cm-1 |
| 1452551c 5P7.0 | 39066300.0 cm-1 |
| 2451551j 3D7.0 | 39325300.0 cm-1 |
| 2451551g 3P4.0 | 39436300.0 cm-1 |
| 2451551h 3D7.0 | 39611300.0 cm-1 |
| 1452551c 3P4.0 | 39730300.0 cm-1 |
| 1452551c 1D2.0 | 39747300.0 cm-1 |
| 2451551i 3P4.0 | 39853300.0 cm-1 |
| 1452551d 3D7.0 | 39876300.0 cm-1 |
| 1452551d 5D12.0 | 39894300.0 cm-1 |
| 2451551h 3P4.0 | 39909300.0 cm-1 |
| 1452551c 3S1.0 | 39990300.0 cm-1 |
| 1452551d 3F10.0 | 40010300.0 cm-1 |
| 1452551c 3P4.0 | 40012300.0 cm-1 |
| 1452551c 1P1.0 | 40275300.0 cm-1 |
| 1452551c 1S0.0 | 40305300.0 cm-1 |
| 1452551c 1P1.0 | 40347300.0 cm-1 |
| 1452551d 3D7.0 | 40676300.0 cm-1 |
| 1452551d 3D7.0 | 40728300.0 cm-1 |
| 2451551g 1P1.0 | 40748300.0 cm-1 |
| 1452551d 1D2.0 | 40754300.0 cm-1 |
| 2451551i 3F10.0 | 40775300.0 cm-1 |
| 1452551d 1P1.0 | 40801300.0 cm-1 |
| 1452551d 1D2.0 | 40811300.0 cm-1 |
| 2451551i 3D7.0 | 40888300.0 cm-1 |
| 2451551j 3G13.0 | 40910300.0 cm-1 |
| 2451551h 3S1.0 | 40919300.0 cm-1 |
| 2451551h 1D2.0 | 40922300.0 cm-1 |
| 2451551h 1P1.0 | 41245300.0 cm-1 |
| 2451551h 1S0.0 | 41272300.0 cm-1 |
| 2451551i 1D2.0 | 41519300.0 cm-1 |
| 2451551i 1P1.0 | 41532300.0 cm-1 |
| 2451551j 3F10.0 | 41672300.0 cm-1 |
| 2451551j 1F3.0 | 41691300.0 cm-1 |
| 2451551o 1F3.0 | 41697300.0 cm-1 |
| 2451551j 1D2.0 | 41707300.0 cm-1 |
| 2451551p 1G4.0 | 41805300.0 cm-1 |
| 2451551p 3D7.0 | 42382300.0 cm-1 |
| 2451551m 3P4.0 | 42848300.0 cm-1 |
| 2451551n 3D7.0 | 42857300.0 cm-1 |
| 2451551o 3P4.0 | 42983300.0 cm-1 |
| 2451551n 3P4.0 | 43141300.0 cm-1 |
| 2451551v 1F3.0 | 43711300.0 cm-1 |
| 2451551w 1G4.0 | 43783300.0 cm-1 |
| 2451551o 3F10.0 | 43910300.0 cm-1 |
| 2451551p 3G13.0 | 43970300.0 cm-1 |
| 2451551o 3D7.0 | 44023300.0 cm-1 |
| 2451551m 1P1.0 | 44158300.0 cm-1 |
| 2451551n 3S1.0 | 44264300.0 cm-1 |
| 2451551n 1D2.0 | 44265300.0 cm-1 |
| 2451551w 3D7.0 | 44364300.0 cm-1 |
| 2451551n 1P1.0 | 44467300.0 cm-1 |
| 2451551n 1S0.0 | 44484300.0 cm-1 |
| 2451551o 1D2.0 | 44638300.0 cm-1 |
| 2451551o 1P1.0 | 44646300.0 cm-1 |
| 2451551p 3F10.0 | 44733300.0 cm-1 |
| 2451551p 1F3.0 | 44745300.0 cm-1 |
| 2451551p 1D2.0 | 44754300.0 cm-1 |
| 2451551u 3D7.0 | 44944300.0 cm-1 |
| 2451551v 3P4.0 | 45005300.0 cm-1 |
| 2451551t 3P4.0 | 45026300.0 cm-1 |
| 2451551u 3P4.0 | 45220300.0 cm-1 |
| 2451551v 3F10.0 | 45935300.0 cm-1 |
| 2451551w 3G13.0 | 45954300.0 cm-1 |
| 2451551v 3D7.0 | 46047300.0 cm-1 |
| 2451551t 1P1.0 | 46336300.0 cm-1 |
| 2451551u 3S1.0 | 46406300.0 cm-1 |
| 2451551u 1D2.0 | 46406300.0 cm-1 |
| 2451551u 1P1.0 | 46541300.0 cm-1 |
| 2451551u 1S0.0 | 46551300.0 cm-1 |
| 2451551v 1D2.0 | 46654300.0 cm-1 |
| 2451551v 1P1.0 | 46659300.0 cm-1 |
| 2451551w 3F10.0 | 46716300.0 cm-1 |
| 2451551w 1F3.0 | 46724300.0 cm-1 |
| 2451551w 1D2.0 | 46731300.0 cm-1 |
Contributors
- Adam Foster
- Martin O'Mullane
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 24525 == 3S2 3P2 2 1D 1D/ 2 24525 == 3S2 3P2 1 3P 3P/ 3 14535 == 3S1 3P3 1 2S 2S/ 2 2D 3D/ 4 24525 == 3S2 3P2 3 1S 1S/ 5 24515516 == 3S2 3P1 3D1 1 2P 2P/ 1 2D 3F/ 6 24515516 == 3S2 3P1 3D1 1 2P 2P/ 1 2D 3P/ 7 14535 == 3S1 3P3 1 2S 2S/ 1 4S 5S/ 8 14535 == 3S1 3P3 1 2S 2S/ 2 2D 1D/ 9 14535 == 3S1 3P3 1 2S 2S/ 1 4S 3S/ 10 24515516 == 3S2 3P1 3D1 1 2P 2P/ 1 2D 3D/ 11 24515516 == 3S2 3P1 3D1 * 1 2P 2P/ 1 2D 1F/ 12 24515516 == 3S2 3P1 3D1 * 1 2P 2P/ 1 2D 1D/ 13 24515516 == 3S2 3P1 3D1 1 2P 2P/ 1 2D 1P/ 14 14535 == 3S1 3P3 1 2S 2S/ 3 2P 3P/ 15 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3G/ 16 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 5D/ 17 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3D/ 18 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 5P/ 19 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3P/ 20 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1G/ 21 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1D/ 22 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1P/ 23 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1S/ 24 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 5F/ 25 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 3F/ 26 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3S/ 27 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1F/ 28 14535 == 3S1 3P3 1 2S 2S/ 3 2P 1P/ 29 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 3D/ 30 14525516 == 3S1 3P2 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3F/ 31 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 3P/ 32 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 3P/ 33 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 3F/ 34 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 3D/ 35 14525516 == 3S1 3P2 3D1 1 2S 2S/ 3 1S 2S/ 1 2D 3D/ 36 14525516 == 3S1 3P2 3D1 1 2S 2S/ 3 1S 2S/ 1 2D 1D/ 37 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 1F/ 38 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 1P/ 39 14525516 == 3S1 3P2 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 1D/ 40 24515517 == 3S2 3P1 4S1 1 2P 2P/ 1 2S 3P/ 41 24515518 == 3S2 3P1 4P1 * 1 2P 2P/ 1 2P 3S/ 42 24515519 == 3S2 3P1 4D1 * 1 2P 2P/ 1 2D 1F/ 43 24515518 == 3S2 3P1 4P1 1 2P 2P/ 1 2P 3D/ 44 24515517 == 3S2 3P1 4S1 1 2P 2P/ 1 2S 1P/ 45 14525518 == 3S1 3P2 4P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5S/ 46 24515518 == 3S2 3P1 4P1 * 1 2P 2P/ 1 2P 1D/ 47 24515518 == 3S2 3P1 4P1 1 2P 2P/ 1 2P 3P/ 48 2451551A == 3S2 3P1 4F1 1 2P 2P/ 1 2F 3D/ 49 24515519 == 3S2 3P1 4D1 1 2P 2P/ 1 2D 3P/ 50 24515518 == 3S2 3P1 4P1 1 2P 2P/ 1 2P 1P/ 51 24515519 == 3S2 3P1 4D1 1 2P 2P/ 1 2D 3F/ 52 24515518 == 3S2 3P1 4P1 1 2P 2P/ 1 2P 1S/ 53 24515519 == 3S2 3P1 4D1 1 2P 2P/ 1 2D 3D/ 54 2451551A == 3S2 3P1 4F1 1 2P 2P/ 1 2F 3F/ 55 14525518 == 3S1 3P2 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 3F/ 56 2451551A == 3S2 3P1 4F1 1 2P 2P/ 1 2F 3G/ 57 14525518 == 3S1 3P2 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 3D/ 58 24515519 == 3S2 3P1 4D1 * 1 2P 2P/ 1 2D 1D/ 59 24515519 == 3S2 3P1 4D1 1 2P 2P/ 1 2D 1P/ 60 14525518 == 3S1 3P2 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 1P/ 61 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 5D/ 62 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 5P/ 63 14525518 == 3S1 3P2 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 3P/ 64 14525518 == 3S1 3P2 4P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1D/ 65 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 3D/ 66 14525518 == 3S1 3P2 4P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1F/ 67 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 3S/ 68 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 1D/ 69 2451551A == 3S2 3P1 4F1 * 1 2P 2P/ 1 2F 1F/ 70 2451551A == 3S2 3P1 4F1 1 2P 2P/ 1 2F 1G/ 71 2451551A == 3S2 3P1 4F1 1 2P 2P/ 1 2F 1D/ 72 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 3P/ 73 14525519 == 3S1 3P2 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3S/ 74 14525519 == 3S1 3P2 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 3G/ 75 14525519 == 3S1 3P2 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3F/ 76 14525519 == 3S1 3P2 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 3D/ 77 14525519 == 3S1 3P2 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 1D/ 78 14525519 == 3S1 3P2 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 1P/ 79 14525519 == 3S1 3P2 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 1S/ 80 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 1F/ 81 14525519 == 3S1 3P2 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1F/ 82 14525519 == 3S1 3P2 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 3P/ 83 14525519 == 3S1 3P2 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1G/ 84 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 3F/ 85 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 3P/ 86 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 5F/ 87 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 3P/ 88 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 5P/ 89 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 3D/ 90 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 3P/ 91 14525518 == 3S1 3P2 4P1 1 2S 2S/ 3 1S 2S/ 1 2P 3P/ 92 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 3S/ 93 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 1S/ 94 14525518 == 3S1 3P2 4P1 1 2S 2S/ 3 1S 2S/ 1 2P 1P/ 95 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 5D/ 96 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 3D/ 97 14525518 == 3S1 3P2 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 1P/ 98 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 3F/ 99 14525519 == 3S1 3P2 4D1 1 2S 2S/ 3 1S 2S/ 1 2D 3D/ 100 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 3D/ 101 14525519 == 3S1 3P2 4D1 1 2S 2S/ 3 1S 2S/ 1 2D 1D/ 102 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 1P/ 103 14525519 == 3S1 3P2 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 1D/ 104 2451551D == 3S2 3P1 5D1 * 1 2P 2P/ 1 2D 1F/ 105 2451551B == 3S2 3P1 5S1 1 2P 2P/ 1 2S 3P/ 106 2451551E == 3S2 3P1 5F1 * 1 2P 2P/ 1 2F 1G/ 107 2451551C == 3S2 3P1 5P1 1 2P 2P/ 1 2P 3D/ 108 2451551E == 3S2 3P1 5F1 1 2P 2P/ 1 2F 3D/ 109 1452551C == 3S1 3P2 5P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5S/ 110 2451551C == 3S2 3P1 5P1 1 2P 2P/ 1 2P 3P/ 111 2451551D == 3S2 3P1 5D1 1 2P 2P/ 1 2D 3P/ 112 2451551B == 3S2 3P1 5S1 1 2P 2P/ 1 2S 1P/ 113 2451551C == 3S2 3P1 5P1 * 1 2P 2P/ 1 2P 3S/ 114 2451551C == 3S2 3P1 5P1 * 1 2P 2P/ 1 2P 1D/ 115 2451551D == 3S2 3P1 5D1 1 2P 2P/ 1 2D 3F/ 116 2451551D == 3S2 3P1 5D1 1 2P 2P/ 1 2D 3D/ 117 2451551E == 3S2 3P1 5F1 1 2P 2P/ 1 2F 3G/ 118 2451551C == 3S2 3P1 5P1 1 2P 2P/ 1 2P 1P/ 119 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 5P/ 120 2451551C == 3S2 3P1 5P1 1 2P 2P/ 1 2P 1S/ 121 2451551D == 3S2 3P1 5D1 * 1 2P 2P/ 1 2D 1D/ 122 2451551D == 3S2 3P1 5D1 1 2P 2P/ 1 2D 1P/ 123 2451551E == 3S2 3P1 5F1 1 2P 2P/ 1 2F 3F/ 124 2451551E == 3S2 3P1 5F1 * 1 2P 2P/ 1 2F 1F/ 125 2451551E == 3S2 3P1 5F1 1 2P 2P/ 1 2F 1D/ 126 1452551C == 3S1 3P2 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 3F/ 127 1452551C == 3S1 3P2 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 3P/ 128 1452551C == 3S1 3P2 5P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1D/ 129 1452551C == 3S1 3P2 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 3D/ 130 1452551C == 3S1 3P2 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 1P/ 131 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 3P/ 132 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 3S/ 133 1452551C == 3S1 3P2 5P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1F/ 134 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 5D/ 135 1452551D == 3S1 3P2 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3S/ 136 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 3D/ 137 1452551D == 3S1 3P2 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 3F/ 138 1452551D == 3S1 3P2 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 3D/ 139 1452551D == 3S1 3P2 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 3G/ 140 1452551D == 3S1 3P2 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 1D/ 141 1452551D == 3S1 3P2 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 1P/ 142 1452551D == 3S1 3P2 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1S/ 143 1452551D == 3S1 3P2 5D1 * 1 2S 2S/ 1 3P 2P/ 1 2D 1F/ 144 1452551D == 3S1 3P2 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3P/ 145 1452551D == 3S1 3P2 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1F/ 146 1452551D == 3S1 3P2 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1G/ 147 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 3P/ 148 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 5F/ 149 2451551I == 3S2 3P1 6D1 * 1 2P 2P/ 1 2D 1F/ 150 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 3D/ 151 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 3P/ 152 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 3F/ 153 2451551J == 3S2 3P1 6F1 * 1 2P 2P/ 1 2F 1G/ 154 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 5P/ 155 2451551J == 3S2 3P1 6F1 1 2P 2P/ 1 2F 3D/ 156 2451551G == 3S2 3P1 6S1 1 2P 2P/ 1 2S 3P/ 157 2451551H == 3S2 3P1 6P1 1 2P 2P/ 1 2P 3D/ 158 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 3P/ 159 1452551C == 3S1 3P2 5P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 1D/ 160 2451551I == 3S2 3P1 6D1 1 2P 2P/ 1 2D 3P/ 161 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 3D/ 162 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 5D/ 163 2451551H == 3S2 3P1 6P1 1 2P 2P/ 1 2P 3P/ 164 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 3S/ 165 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 3F/ 166 1452551C == 3S1 3P2 5P1 1 2S 2S/ 3 1S 2S/ 1 2P 3P/ 167 1452551C == 3S1 3P2 5P1 1 2S 2S/ 3 1S 2S/ 1 2P 1P/ 168 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 1S/ 169 1452551C == 3S1 3P2 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 1P/ 170 1452551D == 3S1 3P2 5D1 1 2S 2S/ 3 1S 2S/ 1 2D 3D/ 171 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 3D/ 172 2451551G == 3S2 3P1 6S1 1 2P 2P/ 1 2S 1P/ 173 1452551D == 3S1 3P2 5D1 1 2S 2S/ 3 1S 2S/ 1 2D 1D/ 174 2451551I == 3S2 3P1 6D1 1 2P 2P/ 1 2D 3F/ 175 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 1P/ 176 1452551D == 3S1 3P2 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 1D/ 177 2451551I == 3S2 3P1 6D1 1 2P 2P/ 1 2D 3D/ 178 2451551J == 3S2 3P1 6F1 1 2P 2P/ 1 2F 3G/ 179 2451551H == 3S2 3P1 6P1 * 1 2P 2P/ 1 2P 3S/ 180 2451551H == 3S2 3P1 6P1 * 1 2P 2P/ 1 2P 1D/ 181 2451551H == 3S2 3P1 6P1 1 2P 2P/ 1 2P 1P/ 182 2451551H == 3S2 3P1 6P1 1 2P 2P/ 1 2P 1S/ 183 2451551I == 3S2 3P1 6D1 1 2P 2P/ 1 2D 1D/ 184 2451551I == 3S2 3P1 6D1 1 2P 2P/ 1 2D 1P/ 185 2451551J == 3S2 3P1 6F1 1 2P 2P/ 1 2F 3F/ 186 2451551J == 3S2 3P1 6F1 * 1 2P 2P/ 1 2F 1F/ 187 2451551O == 3S2 3P1 7D1 * 1 2P 2P/ 1 2D 1F/ 188 2451551J == 3S2 3P1 6F1 1 2P 2P/ 1 2F 1D/ 189 2451551P == 3S2 3P1 7F1 * 1 2P 2P/ 1 2F 1G/ 190 2451551P == 3S2 3P1 7F1 1 2P 2P/ 1 2F 3D/ 191 2451551M == 3S2 3P1 7S1 1 2P 2P/ 1 2S 3P/ 192 2451551N == 3S2 3P1 7P1 1 2P 2P/ 1 2P 3D/ 193 2451551O == 3S2 3P1 7D1 1 2P 2P/ 1 2D 3P/ 194 2451551N == 3S2 3P1 7P1 1 2P 2P/ 1 2P 3P/ 195 2451551V == 3S2 3P1 8D1 * 1 2P 2P/ 1 2D 1F/ 196 2451551W == 3S2 3P1 8F1 * 1 2P 2P/ 1 2F 1G/ 197 2451551O == 3S2 3P1 7D1 1 2P 2P/ 1 2D 3F/ 198 2451551P == 3S2 3P1 7F1 1 2P 2P/ 1 2F 3G/ 199 2451551O == 3S2 3P1 7D1 1 2P 2P/ 1 2D 3D/ 200 2451551M == 3S2 3P1 7S1 1 2P 2P/ 1 2S 1P/ 201 2451551N == 3S2 3P1 7P1 * 1 2P 2P/ 1 2P 3S/ 202 2451551N == 3S2 3P1 7P1 * 1 2P 2P/ 1 2P 1D/ 203 2451551W == 3S2 3P1 8F1 1 2P 2P/ 1 2F 3D/ 204 2451551N == 3S2 3P1 7P1 1 2P 2P/ 1 2P 1P/ 205 2451551N == 3S2 3P1 7P1 1 2P 2P/ 1 2P 1S/ 206 2451551O == 3S2 3P1 7D1 1 2P 2P/ 1 2D 1D/ 207 2451551O == 3S2 3P1 7D1 1 2P 2P/ 1 2D 1P/ 208 2451551P == 3S2 3P1 7F1 1 2P 2P/ 1 2F 3F/ 209 2451551P == 3S2 3P1 7F1 * 1 2P 2P/ 1 2F 1F/ 210 2451551P == 3S2 3P1 7F1 1 2P 2P/ 1 2F 1D/ 211 2451551U == 3S2 3P1 8P1 1 2P 2P/ 1 2P 3D/ 212 2451551V == 3S2 3P1 8D1 1 2P 2P/ 1 2D 3P/ 213 2451551T == 3S2 3P1 8S1 1 2P 2P/ 1 2S 3P/ 214 2451551U == 3S2 3P1 8P1 1 2P 2P/ 1 2P 3P/ 215 2451551V == 3S2 3P1 8D1 1 2P 2P/ 1 2D 3F/ 216 2451551W == 3S2 3P1 8F1 1 2P 2P/ 1 2F 3G/ 217 2451551V == 3S2 3P1 8D1 1 2P 2P/ 1 2D 3D/ 218 2451551T == 3S2 3P1 8S1 1 2P 2P/ 1 2S 1P/ 219 2451551U == 3S2 3P1 8P1 * 1 2P 2P/ 1 2P 3S/ 220 2451551U == 3S2 3P1 8P1 * 1 2P 2P/ 1 2P 1D/ 221 2451551U == 3S2 3P1 8P1 1 2P 2P/ 1 2P 1P/ 222 2451551U == 3S2 3P1 8P1 1 2P 2P/ 1 2P 1S/ 223 2451551V == 3S2 3P1 8D1 1 2P 2P/ 1 2D 1D/ 224 2451551V == 3S2 3P1 8D1 1 2P 2P/ 1 2D 1P/ 225 2451551W == 3S2 3P1 8F1 1 2P 2P/ 1 2F 3F/ 226 2451551W == 3S2 3P1 8F1 * 1 2P 2P/ 1 2F 1F/ 227 2451551W == 3S2 3P1 8F1 1 2P 2P/ 1 2F 1D/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 Map to LS levels : 2 2 1 3 3 5 10 6 5 2 4 24 16 18 25 7 3 14 14 8 9 10 11 6 6 5 12 10 13 16 24 16 24 15 17 30 19 33 15 29 17 30 16 19 31 15 25 17 34 20 21 29 22 24 23 26 32 27 19 14 28 18 18 16 25 35 35 32 33 32 29 24 30 31 31 34 34 35 33 36 37 38 39 40 40 43 47 41 43 61 61 51 53 49 42 40 44 45 65 56 48 48 54 47 46 86 72 62 84 88 43 50 61 47 55 52 57 90 89 55 57 53 49 51 49 58 53 51 59 61 87 65 87 55 63 57 60 54 64 54 56 66 48 63 67 68 63 56 69 70 71 86 95 95 86 75 76 74 73 86 84 62 96 98 85 74 75 76 82 74 75 76 77 78 79 85 80 81 83 82 82 88 65 91 91 90 89 61 88 92 87 91 93 94 89 90 97 95 62 95 84 95 86 99 99 72 96 72 96 98 100 85 100 99 101 98 100 102 103 105 105 107 110 110 107 115 116 111 104 117 108 134 134 108 106 109 136 148 131 119 119 105 112 113 114 107 118 110 120 116 111 115 111 116 121 115 122 154 134 126 123 127 123 117 108 117 124 123 125 158 150 126 129 134 151 136 151 126 128 129 130 148 162 162 148 150 133 132 129 127 127 148 152 152 137 138 139 161 135 139 138 137 140 141 142 165 147 139 137 138 144 156 156 147 143 145 146 144 144 157 163 163 157 174 177 160 149 178 155 155 153 154 136 166 166 158 159 134 154 164 151 166 167 168 150 158 162 119 162 152 169 162 148 131 161 131 161 170 170 147 171 165 171 156 170 172 173 165 171 175 176 179 180 191 191 181 157 163 182 192 194 177 160 174 160 177 183 174 194 192 184 197 199 185 185 178 155 186 178 185 193 187 188 198 190 190 189 213 213 211 214 214 211 215 217 212 195 216 203 203 196 191 200 201 202 192 204 194 205 199 193 197 193 199 206 197 207 208 208 198 190 209 198 208 210 213 218 219 220 211 221 214 222 217 212 215 212 217 223 215 224 225 225 216 203 226 216 225 227 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#adf34_tungsten_w60.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 31214 14132 31261 initially 8479 4123 10965 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Adam Foster Date : 15/05/09 -------------------------------------------------------------------------------- Correct the orbital energy line to insert 0.0 for orbitals not present in the set of configurations. Martin O'Mullane 29-11-2011 -------------------------------------------------------------------------------