arf40_ls#w66.dat
        Resolved Specific Ion Data Collections
        
        
                - Ion
- W66+
- Temperature Range
- 77.38 eV  → 1.163 x 105 eV
        ADF04
        
                - Filename
- arf40_ls#w66.dat
- Full Path
- adf04/coparf#74/arf40_ls#w66.dat
Download data 
        
                        
                
                - Spontaneous Emission: W+66(i) → W+66(j) + hv
- Electron Impact Excitation: W+66(i) + e → W+66(j) + e
 
                | 22543 1S0.0 | 0.0 cm-1 | 
| 22543 3P4.0 | 5961100.0 cm-1 | 
| 22543 1D2.0 | 11158200.0 cm-1 | 
| 12553 1P1.0 | 15010400.0 cm-1 | 
| 12553 3P4.0 | 19603800.0 cm-1 | 
| 63 1S0.0 | 30108800.0 cm-1 | 
| 22533515 1F3.0 | 73382800.0 cm-1 | 
| 22533514 3D7.0 | 74521800.0 cm-1 | 
| 22533515 3P4.0 | 74741800.0 cm-1 | 
| 22533516 1G4.0 | 75133800.0 cm-1 | 
| 22533516 3S1.0 | 75391800.0 cm-1 | 
| 22533516 3D7.0 | 78690800.0 cm-1 | 
| 22533516 3P4.0 | 78725800.0 cm-1 | 
| 22533515 5P7.0 | 79168800.0 cm-1 | 
| 22533514 5S2.0 | 80407800.0 cm-1 | 
| 22533514 3S1.0 | 80492800.0 cm-1 | 
| 22533514 1D2.0 | 80714800.0 cm-1 | 
| 22533516 3D7.0 | 80910800.0 cm-1 | 
| 22533515 3D7.0 | 81874800.0 cm-1 | 
| 22533515 3P4.0 | 82014800.0 cm-1 | 
| 22533515 3F10.0 | 83012800.0 cm-1 | 
| 22533516 5D12.0 | 83861800.0 cm-1 | 
| 22533515 1P1.0 | 84822800.0 cm-1 | 
| 22533515 1D2.0 | 85173800.0 cm-1 | 
| 12543515 1D2.0 | 85206800.0 cm-1 | 
| 22533516 3G13.0 | 86154800.0 cm-1 | 
| 22533516 3F10.0 | 86186800.0 cm-1 | 
| 22533516 1S0.0 | 86708800.0 cm-1 | 
| 22533516 1P1.0 | 86838800.0 cm-1 | 
| 22533516 1F3.0 | 86874800.0 cm-1 | 
| 22533516 1D2.0 | 86893800.0 cm-1 | 
| 12543515 3P4.0 | 86955800.0 cm-1 | 
| 22533514 3P4.0 | 87258800.0 cm-1 | 
| 12543515 3S1.0 | 87765800.0 cm-1 | 
| 12543515 5P7.0 | 88240800.0 cm-1 | 
| 12543515 3P4.0 | 88307800.0 cm-1 | 
| 12543515 1S0.0 | 88411800.0 cm-1 | 
| 12543515 1P1.0 | 88452800.0 cm-1 | 
| 12543515 1P1.0 | 88715800.0 cm-1 | 
| 12543516 1F3.0 | 89391800.0 cm-1 | 
| 12543516 3D7.0 | 89710800.0 cm-1 | 
| 22533515 3D7.0 | 89869800.0 cm-1 | 
| 12543516 1D2.0 | 90257800.0 cm-1 | 
| 12543516 1P1.0 | 90318800.0 cm-1 | 
| 22533515 3P4.0 | 91223800.0 cm-1 | 
| 22533516 3F10.0 | 91643800.0 cm-1 | 
| 22533516 3P4.0 | 91712800.0 cm-1 | 
| 12543516 3D7.0 | 92002800.0 cm-1 | 
| 12543516 3D7.0 | 92086800.0 cm-1 | 
| 12543515 3D7.0 | 92316800.0 cm-1 | 
| 22533514 1P1.0 | 92345800.0 cm-1 | 
| 22533515 3S1.0 | 93383800.0 cm-1 | 
| 22533515 1D2.0 | 93409800.0 cm-1 | 
| 12543515 3D7.0 | 93903800.0 cm-1 | 
| 12543516 3P4.0 | 94120800.0 cm-1 | 
| 12543516 5D12.0 | 94842800.0 cm-1 | 
| 12543516 5F17.0 | 95057800.0 cm-1 | 
| 22533516 3D7.0 | 95724800.0 cm-1 | 
| 12543515 5D12.0 | 95802800.0 cm-1 | 
| 12543516 3P4.0 | 95949800.0 cm-1 | 
| 22533515 1P1.0 | 96524800.0 cm-1 | 
| 12543516 3F10.0 | 96554800.0 cm-1 | 
| 22533515 1S0.0 | 96979800.0 cm-1 | 
| 12543515 3P4.0 | 97015800.0 cm-1 | 
| 12543516 3P4.0 | 97556800.0 cm-1 | 
| 22533516 1F3.0 | 97620800.0 cm-1 | 
| 12543515 3F10.0 | 97761800.0 cm-1 | 
| 12543515 3P4.0 | 98103800.0 cm-1 | 
| 22533516 1D2.0 | 98293800.0 cm-1 | 
| 22533516 1P1.0 | 98584800.0 cm-1 | 
| 12543516 3F10.0 | 98596800.0 cm-1 | 
| 22533518 3S1.0 | 98828800.0 cm-1 | 
| 12543515 3D7.0 | 99195800.0 cm-1 | 
| 22533519 1F3.0 | 99205800.0 cm-1 | 
| 12543515 1D2.0 | 99522800.0 cm-1 | 
| 22533519 1G4.0 | 99532800.0 cm-1 | 
| 22533519 3S1.0 | 99621800.0 cm-1 | 
| 12543515 1P1.0 | 99653800.0 cm-1 | 
| 2253351a 1G4.0 | 99910800.0 cm-1 | 
| 2253351a 1F3.0 | 99913800.0 cm-1 | 
| 2253351a 1H5.0 | 99920800.0 cm-1 | 
| 12543515 3S1.0 | 99963800.0 cm-1 | 
| 12543515 1F3.0 | 100003000.0 cm-1 | 
| 12543516 3S1.0 | 100548000.0 cm-1 | 
| 12543516 3G13.0 | 100882000.0 cm-1 | 
| 12543516 3F10.0 | 101016000.0 cm-1 | 
| 12543516 3D7.0 | 101022000.0 cm-1 | 
| 12543516 1D2.0 | 101387000.0 cm-1 | 
| 12543516 1P1.0 | 101500000.0 cm-1 | 
| 12543516 1S0.0 | 101579000.0 cm-1 | 
| 12543516 1G4.0 | 101759000.0 cm-1 | 
| 12543516 1F3.0 | 101783000.0 cm-1 | 
| 12543516 1D2.0 | 101887000.0 cm-1 | 
| 22533517 3D7.0 | 102463000.0 cm-1 | 
| 22533518 3D7.0 | 103965000.0 cm-1 | 
| 22533518 3D7.0 | 104879000.0 cm-1 | 
| 2253351a 3P4.0 | 105000000.0 cm-1 | 
| 22533519 3D7.0 | 105632000.0 cm-1 | 
| 22533518 5P7.0 | 105645000.0 cm-1 | 
| 22533519 3P4.0 | 105841000.0 cm-1 | 
| 2253351a 3F10.0 | 106325000.0 cm-1 | 
| 12543516 5P7.0 | 107909000.0 cm-1 | 
| 22533517 5S2.0 | 108379000.0 cm-1 | 
| 2253351a 3G13.0 | 108389000.0 cm-1 | 
| 22533517 3S1.0 | 108399000.0 cm-1 | 
| 2253351a 3F10.0 | 108639000.0 cm-1 | 
| 22533519 3D7.0 | 108639000.0 cm-1 | 
| 22533517 1D2.0 | 108639000.0 cm-1 | 
| 2253351a 3D7.0 | 109089000.0 cm-1 | 
| 22533518 3F10.0 | 109559000.0 cm-1 | 
| 22533518 3P4.0 | 110169000.0 cm-1 | 
| 22533518 1P1.0 | 110399000.0 cm-1 | 
| 22533518 1D2.0 | 110469000.0 cm-1 | 
| 2253351c 1F3.0 | 110489000.0 cm-1 | 
| 2253351c 3S1.0 | 110489000.0 cm-1 | 
| 22533519 5D12.0 | 110719000.0 cm-1 | 
| 22533519 3G13.0 | 110829000.0 cm-1 | 
| 2253351d 1G4.0 | 110849000.0 cm-1 | 
| 2253351d 3S1.0 | 110879000.0 cm-1 | 
| 22533519 1F3.0 | 110879000.0 cm-1 | 
| 2253351e 1F3.0 | 111029000.0 cm-1 | 
| 2253351e 1G4.0 | 111029000.0 cm-1 | 
| 2253351e 1H5.0 | 111039000.0 cm-1 | 
| 22533519 1S0.0 | 111099000.0 cm-1 | 
| 22533519 1P1.0 | 111149000.0 cm-1 | 
| 22533519 1D2.0 | 111159000.0 cm-1 | 
| 2253351a 5F17.0 | 111169000.0 cm-1 | 
| 12543515 5S2.0 | 111259000.0 cm-1 | 
| 2253351a 3H16.0 | 111319000.0 cm-1 | 
| 2253351a 1D2.0 | 111479000.0 cm-1 | 
| 2253351a 1P1.0 | 111479000.0 cm-1 | 
| 22533518 3P4.0 | 111819000.0 cm-1 | 
| 12543518 3S1.0 | 112519000.0 cm-1 | 
| 12543518 1D2.0 | 112529000.0 cm-1 | 
| 22533519 3D7.0 | 112569000.0 cm-1 | 
| 12543518 3S1.0 | 113149000.0 cm-1 | 
| 12543518 3P4.0 | 113209000.0 cm-1 | 
| 22533519 3F10.0 | 113679000.0 cm-1 | 
| 22533519 3P4.0 | 113719000.0 cm-1 | 
| 12543518 1P1.0 | 113829000.0 cm-1 | 
| 12543518 1S0.0 | 113859000.0 cm-1 | 
| 12543518 1P1.0 | 113949000.0 cm-1 | 
| 12543519 1F3.0 | 114239000.0 cm-1 | 
| 12543519 3D7.0 | 114339000.0 cm-1 | 
| 12543519 1D2.0 | 114549000.0 cm-1 | 
| 12543519 1P1.0 | 114609000.0 cm-1 | 
| 2253351d 3P4.0 | 114629000.0 cm-1 | 
| 12543519 1D2.0 | 114649000.0 cm-1 | 
| 12543518 5P7.0 | 114689000.0 cm-1 | 
| 2253351b 3D7.0 | 114999000.0 cm-1 | 
| 22533517 3P4.0 | 115219000.0 cm-1 | 
| 12543519 5D12.0 | 115439000.0 cm-1 | 
| 2253351c 3D7.0 | 115749000.0 cm-1 | 
| 2253351e 3P4.0 | 116149000.0 cm-1 | 
| 22533519 3F10.0 | 116159000.0 cm-1 | 
| 12543519 3D7.0 | 116199000.0 cm-1 | 
| 2253351a 3G13.0 | 116349000.0 cm-1 | 
| 12543519 3D7.0 | 116689000.0 cm-1 | 
| 2253351h 3S1.0 | 116779000.0 cm-1 | 
| 2253351h 1F3.0 | 116779000.0 cm-1 | 
| 2253351d 3D7.0 | 116809000.0 cm-1 | 
| 22533518 3P4.0 | 116849000.0 cm-1 | 
| 2253351i 1G4.0 | 116979000.0 cm-1 | 
| 2253351i 3S1.0 | 116999000.0 cm-1 | 
| 2253351i 1F3.0 | 116999000.0 cm-1 | 
| 2253351j 1F3.0 | 117089000.0 cm-1 | 
| 2253351j 1G4.0 | 117089000.0 cm-1 | 
| 2253351j 1H5.0 | 117089000.0 cm-1 | 
| 2253351e 3F10.0 | 117469000.0 cm-1 | 
| 2253351c 5P7.0 | 117669000.0 cm-1 | 
| 2253351a 3D7.0 | 117749000.0 cm-1 | 
| 12543518 3D7.0 | 118619000.0 cm-1 | 
| 12543518 3P4.0 | 118829000.0 cm-1 | 
| 2253351e 3G13.0 | 119549000.0 cm-1 | 
| 2253351d 3F10.0 | 119549000.0 cm-1 | 
| 12543518 3D7.0 | 119719000.0 cm-1 | 
| 2253351e 3F10.0 | 119799000.0 cm-1 | 
| 2253351d 3D7.0 | 120009000.0 cm-1 | 
| 2253351e 3D7.0 | 120239000.0 cm-1 | 
| 12543519 3F10.0 | 120249000.0 cm-1 | 
| 22533517 1P1.0 | 120279000.0 cm-1 | 
| 2253351a 3F10.0 | 120349000.0 cm-1 | 
| 2253351n 3S1.0 | 120549000.0 cm-1 | 
| 2253351n 1F3.0 | 120549000.0 cm-1 | 
| 2253351o 1F3.0 | 120679000.0 cm-1 | 
| 2253351o 1G4.0 | 120679000.0 cm-1 | 
| 2253351o 3S1.0 | 120689000.0 cm-1 | 
| 22533518 1D2.0 | 120709000.0 cm-1 | 
| 2253351p 1G4.0 | 120739000.0 cm-1 | 
| 2253351p 1H5.0 | 120739000.0 cm-1 | 
| 2253351p 1F3.0 | 120739000.0 cm-1 | 
| 2253351i 3P4.0 | 120799000.0 cm-1 | 
| 12543519 3P4.0 | 120819000.0 cm-1 | 
| 2253351b 5S2.0 | 120909000.0 cm-1 | 
| 2253351b 3S1.0 | 120929000.0 cm-1 | 
| 12543519 3F10.0 | 121049000.0 cm-1 | 
| 2253351b 1D2.0 | 121159000.0 cm-1 | 
| 2253351c 3F10.0 | 121599000.0 cm-1 | 
| 2253351g 3D7.0 | 121659000.0 cm-1 | 
| 2253351c 3P4.0 | 121819000.0 cm-1 | 
| 12543518 5D12.0 | 121919000.0 cm-1 | 
| 22533518 1F3.0 | 122019000.0 cm-1 | 
| 22533518 1P1.0 | 122019000.0 cm-1 | 
| 2253351c 1P1.0 | 122049000.0 cm-1 | 
| 2253351c 1D2.0 | 122079000.0 cm-1 | 
| 2253351d 5D12.0 | 122089000.0 cm-1 | 
| 2253351h 3D7.0 | 122099000.0 cm-1 | 
| 22533518 1S0.0 | 122159000.0 cm-1 | 
| 2253351j 3P4.0 | 122209000.0 cm-1 | 
| 2253351d 3G13.0 | 122239000.0 cm-1 | 
| 2253351e 5F17.0 | 122319000.0 cm-1 | 
| 12543518 3P4.0 | 122329000.0 cm-1 | 
| 2253351d 1S0.0 | 122409000.0 cm-1 | 
| 2253351d 1P1.0 | 122419000.0 cm-1 | 
| 2253351d 1D2.0 | 122429000.0 cm-1 | 
| 2253351d 1F3.0 | 122449000.0 cm-1 | 
| 2253351e 3H16.0 | 122479000.0 cm-1 | 
| 12543519 5F17.0 | 122579000.0 cm-1 | 
| 2253351e 1D2.0 | 122599000.0 cm-1 | 
| 2253351e 1P1.0 | 122599000.0 cm-1 | 
| 22533519 1D2.0 | 122729000.0 cm-1 | 
| 22533519 1P1.0 | 122829000.0 cm-1 | 
| 2253351i 3D7.0 | 122979000.0 cm-1 | 
| 2253351a 1G4.0 | 122979000.0 cm-1 | 
| 2253351a 1D2.0 | 123129000.0 cm-1 | 
| 2253351a 1F3.0 | 123129000.0 cm-1 | 
| 2253351j 3F10.0 | 123539000.0 cm-1 | 
| 2253351c 3P4.0 | 124059000.0 cm-1 | 
| 2253351h 5P7.0 | 124109000.0 cm-1 | 
| 12543518 3F10.0 | 124299000.0 cm-1 | 
| 12543518 3P4.0 | 124459000.0 cm-1 | 
| 2253351o 3P4.0 | 124499000.0 cm-1 | 
| 1254351c 3S1.0 | 124799000.0 cm-1 | 
| 1254351c 1D2.0 | 124839000.0 cm-1 | 
| 1254351c 3S1.0 | 124839000.0 cm-1 | 
| 12543518 1D2.0 | 124959000.0 cm-1 | 
| 12543518 3D7.0 | 124959000.0 cm-1 | 
| 12543518 1P1.0 | 125019000.0 cm-1 | 
| 1254351c 3P4.0 | 125159000.0 cm-1 | 
| 12543518 1F3.0 | 125439000.0 cm-1 | 
| 1254351c 1P1.0 | 125469000.0 cm-1 | 
| 1254351c 1S0.0 | 125519000.0 cm-1 | 
| 1254351c 1P1.0 | 125559000.0 cm-1 | 
| 12543519 3G13.0 | 125579000.0 cm-1 | 
| 2253351n 3P4.0 | 125589000.0 cm-1 | 
| 12543519 3D7.0 | 125609000.0 cm-1 | 
| 12543519 3F10.0 | 125609000.0 cm-1 | 
| 2253351j 3G13.0 | 125619000.0 cm-1 | 
| 2253351m 3D7.0 | 125629000.0 cm-1 | 
| 12543519 1D2.0 | 125689000.0 cm-1 | 
| 1254351d 1F3.0 | 125699000.0 cm-1 | 
| 1254351d 3D7.0 | 125719000.0 cm-1 | 
| 2253351i 3F10.0 | 125729000.0 cm-1 | 
| 12543519 1P1.0 | 125749000.0 cm-1 | 
| 12543519 1S0.0 | 125759000.0 cm-1 | 
| 1254351d 1D2.0 | 125829000.0 cm-1 | 
| 12543519 3P4.0 | 125869000.0 cm-1 | 
| 2253351j 3F10.0 | 125869000.0 cm-1 | 
| 2253351p 3P4.0 | 125869000.0 cm-1 | 
| 1254351d 1P1.0 | 125899000.0 cm-1 | 
| 1254351d 1D2.0 | 125919000.0 cm-1 | 
| 12543519 1F3.0 | 126149000.0 cm-1 | 
| 12543519 1G4.0 | 126149000.0 cm-1 | 
| 12543519 3S1.0 | 126179000.0 cm-1 | 
| 2253351i 3D7.0 | 126179000.0 cm-1 | 
| 2253351j 3D7.0 | 126319000.0 cm-1 | 
| 2253351o 3D7.0 | 126689000.0 cm-1 | 
| 1254351c 5P7.0 | 126709000.0 cm-1 | 
| 12543519 3P4.0 | 126809000.0 cm-1 | 
| 1254351d 5D12.0 | 126849000.0 cm-1 | 
| 2253351p 3F10.0 | 127199000.0 cm-1 | 
| 1254351d 3D7.0 | 127459000.0 cm-1 | 
| 2253351e 3G13.0 | 127489000.0 cm-1 | 
| 2253351c 3D7.0 | 127499000.0 cm-1 | 
| 2253351d 3F10.0 | 127519000.0 cm-1 | 
| 2253351g 3S1.0 | 127589000.0 cm-1 | 
| 2253351g 5S2.0 | 127589000.0 cm-1 | 
| 2253351d 3P4.0 | 127669000.0 cm-1 | 
| 2253351b 3P4.0 | 127759000.0 cm-1 | 
| 2253351g 1D2.0 | 127829000.0 cm-1 | 
| 2253351n 5P7.0 | 127959000.0 cm-1 | 
| 2253351h 3F10.0 | 128049000.0 cm-1 | 
| 1254351d 3D7.0 | 128079000.0 cm-1 | 
| 2253351h 3P4.0 | 128099000.0 cm-1 | 
| 2253351i 5D12.0 | 128259000.0 cm-1 | 
| 2253351h 1P1.0 | 128339000.0 cm-1 | 
| 2253351h 1D2.0 | 128349000.0 cm-1 | 
| 2253351j 5F17.0 | 128389000.0 cm-1 | 
| 2253351i 3G13.0 | 128419000.0 cm-1 | 
| 2253351i 1S0.0 | 128539000.0 cm-1 | 
| 2253351i 1P1.0 | 128549000.0 cm-1 | 
| 2253351i 1D2.0 | 128559000.0 cm-1 | 
| 2253351j 3H16.0 | 128559000.0 cm-1 | 
| 2253351c 3P4.0 | 128579000.0 cm-1 | 
| 2253351j 1P1.0 | 128649000.0 cm-1 | 
| 2253351j 1D2.0 | 128649000.0 cm-1 | 
| 2253351e 3D7.0 | 128899000.0 cm-1 | 
| 2253351p 3G13.0 | 129289000.0 cm-1 | 
| 2253351o 3F10.0 | 129449000.0 cm-1 | 
| 2253351p 3F10.0 | 129539000.0 cm-1 | 
| 2253351n 3D7.0 | 129669000.0 cm-1 | 
| 2253351o 3D7.0 | 129889000.0 cm-1 | 
| 2253351p 3D7.0 | 129979000.0 cm-1 | 
| 1254351c 3P4.0 | 130549000.0 cm-1 | 
| 1254351c 3D7.0 | 130579000.0 cm-1 | 
| 2253351h 3P4.0 | 130599000.0 cm-1 | 
| 2253351e 3F10.0 | 131499000.0 cm-1 | 
| 1254351c 3D7.0 | 131509000.0 cm-1 | 
| 2253351m 5S2.0 | 131549000.0 cm-1 | 
| 2253351m 3S1.0 | 131549000.0 cm-1 | 
| 1254351d 3F10.0 | 131609000.0 cm-1 | 
| 2253351d 3D7.0 | 131699000.0 cm-1 | 
| 2253351m 1D2.0 | 131789000.0 cm-1 | 
| 2253351n 3F10.0 | 131909000.0 cm-1 | 
| 2253351o 5D12.0 | 131969000.0 cm-1 | 
| 2253351p 5F17.0 | 132049000.0 cm-1 | 
| 2253351n 1P1.0 | 132109000.0 cm-1 | 
| 2253351n 1D2.0 | 132119000.0 cm-1 | 
| 2253351o 3G13.0 | 132139000.0 cm-1 | 
| 1254351d 3P4.0 | 132179000.0 cm-1 | 
| 2253351p 3H16.0 | 132219000.0 cm-1 | 
| 2253351o 1S0.0 | 132239000.0 cm-1 | 
| 2253351o 1P1.0 | 132239000.0 cm-1 | 
| 2253351o 1D2.0 | 132239000.0 cm-1 | 
| 2253351p 1P1.0 | 132299000.0 cm-1 | 
| 2253351p 1D2.0 | 132299000.0 cm-1 | 
| 1254351d 3F10.0 | 132399000.0 cm-1 | 
| 12543519 5P7.0 | 132649000.0 cm-1 | 
| 2253351b 1P1.0 | 132819000.0 cm-1 | 
| 2253351c 1D2.0 | 133029000.0 cm-1 | 
| 2253351j 3G13.0 | 133559000.0 cm-1 | 
| 2253351i 3F10.0 | 133669000.0 cm-1 | 
| 2253351c 1P1.0 | 133689000.0 cm-1 | 
| 2253351c 1S0.0 | 133749000.0 cm-1 | 
| 1254351c 5D12.0 | 133809000.0 cm-1 | 
| 2253351i 3P4.0 | 133839000.0 cm-1 | 
| 2253351h 3D7.0 | 133849000.0 cm-1 | 
| 2253351d 1F3.0 | 133889000.0 cm-1 | 
| 1254351c 3P4.0 | 133959000.0 cm-1 | 
| 1254351d 5F17.0 | 133959000.0 cm-1 | 
| 2253351d 1D2.0 | 134049000.0 cm-1 | 
| 2253351d 1P1.0 | 134089000.0 cm-1 | 
| 2253351e 1G4.0 | 134169000.0 cm-1 | 
| 2253351e 1D2.0 | 134249000.0 cm-1 | 
| 2253351e 1F3.0 | 134249000.0 cm-1 | 
| 2253351g 3P4.0 | 134429000.0 cm-1 | 
| 2253351n 3P4.0 | 134499000.0 cm-1 | 
| 2253351h 3P4.0 | 134899000.0 cm-1 | 
| 2253351j 3D7.0 | 134979000.0 cm-1 | 
| 1254351c 3F10.0 | 136339000.0 cm-1 | 
| 1254351c 3P4.0 | 136469000.0 cm-1 | 
| 1254351c 1D2.0 | 136619000.0 cm-1 | 
| 1254351c 1P1.0 | 136639000.0 cm-1 | 
| 12543518 5S2.0 | 136729000.0 cm-1 | 
| 1254351c 3D7.0 | 136739000.0 cm-1 | 
| 1254351d 1D2.0 | 136979000.0 cm-1 | 
| 1254351d 3D7.0 | 136989000.0 cm-1 | 
| 1254351d 3G13.0 | 136989000.0 cm-1 | 
| 1254351d 3F10.0 | 136999000.0 cm-1 | 
| 1254351d 1P1.0 | 136999000.0 cm-1 | 
| 1254351d 1S0.0 | 137009000.0 cm-1 | 
| 1254351c 1F3.0 | 137099000.0 cm-1 | 
| 2253351p 3G13.0 | 137219000.0 cm-1 | 
| 1254351d 3P4.0 | 137229000.0 cm-1 | 
| 2253351o 3F10.0 | 137379000.0 cm-1 | 
| 1254351d 1G4.0 | 137449000.0 cm-1 | 
| 1254351d 1F3.0 | 137459000.0 cm-1 | 
| 1254351d 3S1.0 | 137469000.0 cm-1 | 
| 2253351o 3P4.0 | 137549000.0 cm-1 | 
| 2253351j 3F10.0 | 137579000.0 cm-1 | 
| 2253351n 3D7.0 | 137649000.0 cm-1 | 
| 2253351i 3D7.0 | 137869000.0 cm-1 | 
| 1254351d 3P4.0 | 138179000.0 cm-1 | 
| 2253351m 3P4.0 | 138389000.0 cm-1 | 
| 2253351p 3D7.0 | 138639000.0 cm-1 | 
| 2253351n 3P4.0 | 138689000.0 cm-1 | 
| 2253351g 1P1.0 | 139479000.0 cm-1 | 
| 2253351h 1D2.0 | 139599000.0 cm-1 | 
| 2253351h 1P1.0 | 139989000.0 cm-1 | 
| 2253351h 1S0.0 | 140019000.0 cm-1 | 
| 2253351i 1F3.0 | 140099000.0 cm-1 | 
| 2253351i 1D2.0 | 140189000.0 cm-1 | 
| 2253351i 1P1.0 | 140209000.0 cm-1 | 
| 2253351j 1G4.0 | 140259000.0 cm-1 | 
| 2253351j 1D2.0 | 140299000.0 cm-1 | 
| 2253351j 1F3.0 | 140309000.0 cm-1 | 
| 2253351p 3F10.0 | 141239000.0 cm-1 | 
| 2253351o 3D7.0 | 141589000.0 cm-1 | 
| 2253351m 1P1.0 | 143449000.0 cm-1 | 
| 2253351n 1D2.0 | 143519000.0 cm-1 | 
| 2253351n 1P1.0 | 143759000.0 cm-1 | 
| 2253351n 1S0.0 | 143779000.0 cm-1 | 
| 2253351o 1F3.0 | 143829000.0 cm-1 | 
| 2253351o 1D2.0 | 143889000.0 cm-1 | 
| 2253351o 1P1.0 | 143899000.0 cm-1 | 
| 2253351p 1G4.0 | 143929000.0 cm-1 | 
| 2253351p 1F3.0 | 143959000.0 cm-1 | 
| 2253351p 1D2.0 | 143959000.0 cm-1 | 
| 1254351d 5P7.0 | 143989000.0 cm-1 | 
| 1254351c 5S2.0 | 148389000.0 cm-1 | 
        Contributors
- Adam Foster
- Martin O'Mullane
 
        
 
 
 
        
 
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 22543 == 2S2 2P4 3 1S 1S/ 2 22543 == 2S2 2P4 1 3P 3P/ 3 22543 == 2S2 2P4 2 1D 1D/ 4 12553 == 2S1 2P5 1 2S 2S/ 1 2P 1P/ 5 12553 == 2S1 2P5 1 2S 2S/ 1 2P 3P/ 6 63 == 2P6 1 1S 1S/ 7 22533515 == 2S2 2P3 3P1 * 2 2D 2D/ 1 2P 1F/ 8 22533514 == 2S2 2P3 3S1 * 2 2D 2D/ 1 2S 3D/ 9 22533515 == 2S2 2P3 3P1 1 4S 4S/ 1 2P 3P/ 10 22533516 == 2S2 2P3 3D1 * 2 2D 2D/ 1 2D 1G/ 11 22533516 == 2S2 2P3 3D1 * 2 2D 2D/ 1 2D 3S/ 12 22533516 == 2S2 2P3 3D1 * 2 2D 2D/ 1 2D 3D/ 13 22533516 == 2S2 2P3 3D1 * 2 2D 2D/ 1 2D 3P/ 14 22533515 == 2S2 2P3 3P1 1 4S 4S/ 1 2P 5P/ 15 22533514 == 2S2 2P3 3S1 1 4S 4S/ 1 2S 5S/ 16 22533514 == 2S2 2P3 3S1 1 4S 4S/ 1 2S 3S/ 17 22533514 == 2S2 2P3 3S1 2 2D 2D/ 1 2S 1D/ 18 22533516 == 2S2 2P3 3D1 1 4S 4S/ 1 2D 3D/ 19 22533515 == 2S2 2P3 3P1 * 2 2D 2D/ 1 2P 3D/ 20 22533515 == 2S2 2P3 3P1 * 2 2D 2D/ 1 2P 3P/ 21 22533515 == 2S2 2P3 3P1 2 2D 2D/ 1 2P 3F/ 22 22533516 == 2S2 2P3 3D1 1 4S 4S/ 1 2D 5D/ 23 22533515 == 2S2 2P3 3P1 2 2D 2D/ 1 2P 1P/ 24 22533515 == 2S2 2P3 3P1 2 2D 2D/ 1 2P 1D/ 25 12543515 == 2S1 2P4 3P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 1D/ 26 22533516 == 2S2 2P3 3D1 2 2D 2D/ 1 2D 3G/ 27 22533516 == 2S2 2P3 3D1 2 2D 2D/ 1 2D 3F/ 28 22533516 == 2S2 2P3 3D1 2 2D 2D/ 1 2D 1S/ 29 22533516 == 2S2 2P3 3D1 2 2D 2D/ 1 2D 1P/ 30 22533516 == 2S2 2P3 3D1 2 2D 2D/ 1 2D 1F/ 31 22533516 == 2S2 2P3 3D1 2 2D 2D/ 1 2D 1D/ 32 12543515 == 2S1 2P4 3P1 1 2S 2S/ 3 1S 2S/ 1 2P 3P/ 33 22533514 == 2S2 2P3 3S1 3 2P 2P/ 1 2S 3P/ 34 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 4P/ 1 2P 3S/ 35 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 4P/ 1 2P 5P/ 36 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 2P/ 1 2P 3P/ 37 12543515 == 2S1 2P4 3P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 1S/ 38 12543515 == 2S1 2P4 3P1 1 2S 2S/ 3 1S 2S/ 1 2P 1P/ 39 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 2P/ 1 2P 1P/ 40 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 1 3P 2P/ 1 2D 1F/ 41 12543516 == 2S1 2P4 3D1 1 2S 2S/ 3 1S 2S/ 1 2D 3D/ 42 22533515 == 2S2 2P3 3P1 3 2P 2P/ 1 2P 3D/ 43 12543516 == 2S1 2P4 3D1 1 2S 2S/ 3 1S 2S/ 1 2D 1D/ 44 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 1P/ 45 22533515 == 2S2 2P3 3P1 3 2P 2P/ 1 2P 3P/ 46 22533516 == 2S2 2P3 3D1 3 2P 2P/ 1 2D 3F/ 47 22533516 == 2S2 2P3 3D1 3 2P 2P/ 1 2D 3P/ 48 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 3D/ 49 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 3D/ 50 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 4P/ 1 2P 3D/ 51 22533514 == 2S2 2P3 3S1 3 2P 2P/ 1 2S 1P/ 52 22533515 == 2S2 2P3 3P1 * 3 2P 2P/ 1 2P 3S/ 53 22533515 == 2S2 2P3 3P1 * 3 2P 2P/ 1 2P 1D/ 54 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 2P/ 1 2P 3D/ 55 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3P/ 56 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 5D/ 57 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 1 3P 4P/ 1 2D 5F/ 58 22533516 == 2S2 2P3 3D1 3 2P 2P/ 1 2D 3D/ 59 12543515 == 2S1 2P4 3P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5D/ 60 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 3P/ 61 22533515 == 2S2 2P3 3P1 3 2P 2P/ 1 2P 1P/ 62 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 3F/ 63 22533515 == 2S2 2P3 3P1 3 2P 2P/ 1 2P 1S/ 64 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 4P/ 1 2P 3P/ 65 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 3P/ 66 22533516 == 2S2 2P3 3D1 * 3 2P 2P/ 1 2D 1F/ 67 12543515 == 2S1 2P4 3P1 1 2S 2S/ 2 1D 2D/ 1 2P 3F/ 68 12543515 == 2S1 2P4 3P1 1 2S 2S/ 2 1D 2D/ 1 2P 3P/ 69 22533516 == 2S2 2P3 3D1 3 2P 2P/ 1 2D 1D/ 70 22533516 == 2S2 2P3 3D1 3 2P 2P/ 1 2D 1P/ 71 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 1 3P 4P/ 1 2D 3F/ 72 22533518 == 2S2 2P3 4P1 * 3 2P 2P/ 1 2P 3S/ 73 12543515 == 2S1 2P4 3P1 1 2S 2S/ 2 1D 2D/ 1 2P 3D/ 74 22533519 == 2S2 2P3 4D1 * 3 2P 2P/ 1 2D 1F/ 75 12543515 == 2S1 2P4 3P1 1 2S 2S/ 2 1D 2D/ 1 2P 1D/ 76 22533519 == 2S2 2P3 4D1 * 2 2D 2D/ 1 2D 1G/ 77 22533519 == 2S2 2P3 4D1 * 2 2D 2D/ 1 2D 3S/ 78 12543515 == 2S1 2P4 3P1 1 2S 2S/ 2 1D 2D/ 1 2P 1P/ 79 2253351A == 2S2 2P3 4F1 * 2 2D 2D/ 1 2F 1G/ 80 2253351A == 2S2 2P3 4F1 * 2 2D 2D/ 1 2F 1F/ 81 2253351A == 2S2 2P3 4F1 * 2 2D 2D/ 1 2F 1H/ 82 12543515 == 2S1 2P4 3P1 1 2S 2S/ 1 3P 2P/ 1 2P 3S/ 83 12543515 == 2S1 2P4 3P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1F/ 84 12543516 == 2S1 2P4 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3S/ 85 12543516 == 2S1 2P4 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3G/ 86 12543516 == 2S1 2P4 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 3F/ 87 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3D/ 88 12543516 == 2S1 2P4 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1D/ 89 12543516 == 2S1 2P4 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1P/ 90 12543516 == 2S1 2P4 3D1 1 2S 2S/ 2 1D 2D/ 1 2D 1S/ 91 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1G/ 92 12543516 == 2S1 2P4 3D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1F/ 93 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 2P/ 1 2D 1D/ 94 22533517 == 2S2 2P3 4S1 * 2 2D 2D/ 1 2S 3D/ 95 22533518 == 2S2 2P3 4P1 * 2 2D 2D/ 1 2P 3D/ 96 22533518 == 2S2 2P3 4P1 3 2P 2P/ 1 2P 3D/ 97 2253351A == 2S2 2P3 4F1 2 2D 2D/ 1 2F 3P/ 98 22533519 == 2S2 2P3 4D1 1 4S 4S/ 1 2D 3D/ 99 22533518 == 2S2 2P3 4P1 1 4S 4S/ 1 2P 5P/ 100 22533519 == 2S2 2P3 4D1 * 2 2D 2D/ 1 2D 3P/ 101 2253351A == 2S2 2P3 4F1 1 4S 4S/ 1 2F 3F/ 102 12543516 == 2S1 2P4 3D1 1 2S 2S/ 1 3P 4P/ 1 2D 5P/ 103 22533517 == 2S2 2P3 4S1 1 4S 4S/ 1 2S 5S/ 104 2253351A == 2S2 2P3 4F1 * 2 2D 2D/ 1 2F 3G/ 105 22533517 == 2S2 2P3 4S1 1 4S 4S/ 1 2S 3S/ 106 2253351A == 2S2 2P3 4F1 * 2 2D 2D/ 1 2F 3F/ 107 22533519 == 2S2 2P3 4D1 * 2 2D 2D/ 1 2D 3D/ 108 22533517 == 2S2 2P3 4S1 2 2D 2D/ 1 2S 1D/ 109 2253351A == 2S2 2P3 4F1 * 2 2D 2D/ 1 2F 3D/ 110 22533518 == 2S2 2P3 4P1 2 2D 2D/ 1 2P 3F/ 111 22533518 == 2S2 2P3 4P1 1 4S 4S/ 1 2P 3P/ 112 22533518 == 2S2 2P3 4P1 2 2D 2D/ 1 2P 1P/ 113 22533518 == 2S2 2P3 4P1 2 2D 2D/ 1 2P 1D/ 114 2253351C == 2S2 2P3 5P1 * 2 2D 2D/ 1 2P 1F/ 115 2253351C == 2S2 2P3 5P1 * 3 2P 2P/ 1 2P 3S/ 116 22533519 == 2S2 2P3 4D1 1 4S 4S/ 1 2D 5D/ 117 22533519 == 2S2 2P3 4D1 2 2D 2D/ 1 2D 3G/ 118 2253351D == 2S2 2P3 5D1 * 2 2D 2D/ 1 2D 1G/ 119 2253351D == 2S2 2P3 5D1 * 2 2D 2D/ 1 2D 3S/ 120 22533519 == 2S2 2P3 4D1 * 2 2D 2D/ 1 2D 1F/ 121 2253351E == 2S2 2P3 5F1 * 2 2D 2D/ 1 2F 1F/ 122 2253351E == 2S2 2P3 5F1 * 2 2D 2D/ 1 2F 1G/ 123 2253351E == 2S2 2P3 5F1 * 2 2D 2D/ 1 2F 1H/ 124 22533519 == 2S2 2P3 4D1 2 2D 2D/ 1 2D 1S/ 125 22533519 == 2S2 2P3 4D1 2 2D 2D/ 1 2D 1P/ 126 22533519 == 2S2 2P3 4D1 2 2D 2D/ 1 2D 1D/ 127 2253351A == 2S2 2P3 4F1 1 4S 4S/ 1 2F 5F/ 128 12543515 == 2S1 2P4 3P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5S/ 129 2253351A == 2S2 2P3 4F1 2 2D 2D/ 1 2F 3H/ 130 2253351A == 2S2 2P3 4F1 2 2D 2D/ 1 2F 1D/ 131 2253351A == 2S2 2P3 4F1 2 2D 2D/ 1 2F 1P/ 132 22533518 == 2S2 2P3 4P1 * 2 2D 2D/ 1 2P 3P/ 133 12543518 == 2S1 2P4 4P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 3S/ 134 12543518 == 2S1 2P4 4P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 1D/ 135 22533519 == 2S2 2P3 4D1 3 2P 2P/ 1 2D 3D/ 136 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 3S/ 137 12543518 == 2S1 2P4 4P1 1 2S 2S/ 3 1S 2S/ 1 2P 3P/ 138 22533519 == 2S2 2P3 4D1 * 2 2D 2D/ 1 2D 3F/ 139 22533519 == 2S2 2P3 4D1 3 2P 2P/ 1 2D 3P/ 140 12543518 == 2S1 2P4 4P1 1 2S 2S/ 3 1S 2S/ 1 2P 1P/ 141 12543518 == 2S1 2P4 4P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 1S/ 142 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 1P/ 143 12543519 == 2S1 2P4 4D1 * 1 2S 2S/ 1 3P 2P/ 1 2D 1F/ 144 12543519 == 2S1 2P4 4D1 1 2S 2S/ 3 1S 2S/ 1 2D 3D/ 145 12543519 == 2S1 2P4 4D1 1 2S 2S/ 3 1S 2S/ 1 2D 1D/ 146 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 1P/ 147 2253351D == 2S2 2P3 5D1 * 2 2D 2D/ 1 2D 3P/ 148 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 1D/ 149 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 5P/ 150 2253351B == 2S2 2P3 5S1 * 2 2D 2D/ 1 2S 3D/ 151 22533517 == 2S2 2P3 4S1 3 2P 2P/ 1 2S 3P/ 152 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 5D/ 153 2253351C == 2S2 2P3 5P1 * 2 2D 2D/ 1 2P 3D/ 154 2253351E == 2S2 2P3 5F1 2 2D 2D/ 1 2F 3P/ 155 22533519 == 2S2 2P3 4D1 3 2P 2P/ 1 2D 3F/ 156 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 3D/ 157 2253351A == 2S2 2P3 4F1 3 2P 2P/ 1 2F 3G/ 158 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 3D/ 159 2253351H == 2S2 2P3 6P1 * 3 2P 2P/ 1 2P 3S/ 160 2253351H == 2S2 2P3 6P1 * 2 2D 2D/ 1 2P 1F/ 161 2253351D == 2S2 2P3 5D1 1 4S 4S/ 1 2D 3D/ 162 22533518 == 2S2 2P3 4P1 3 2P 2P/ 1 2P 3P/ 163 2253351I == 2S2 2P3 6D1 * 2 2D 2D/ 1 2D 1G/ 164 2253351I == 2S2 2P3 6D1 * 2 2D 2D/ 1 2D 3S/ 165 2253351I == 2S2 2P3 6D1 * 2 2D 2D/ 1 2D 1F/ 166 2253351J == 2S2 2P3 6F1 * 2 2D 2D/ 1 2F 1F/ 167 2253351J == 2S2 2P3 6F1 * 2 2D 2D/ 1 2F 1G/ 168 2253351J == 2S2 2P3 6F1 * 2 2D 2D/ 1 2F 1H/ 169 2253351E == 2S2 2P3 5F1 1 4S 4S/ 1 2F 3F/ 170 2253351C == 2S2 2P3 5P1 1 4S 4S/ 1 2P 5P/ 171 2253351A == 2S2 2P3 4F1 3 2P 2P/ 1 2F 3D/ 172 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 3D/ 173 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 3P/ 174 2253351E == 2S2 2P3 5F1 * 2 2D 2D/ 1 2F 3G/ 175 2253351D == 2S2 2P3 5D1 * 2 2D 2D/ 1 2D 3F/ 176 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 2P/ 1 2P 3D/ 177 2253351E == 2S2 2P3 5F1 * 2 2D 2D/ 1 2F 3F/ 178 2253351D == 2S2 2P3 5D1 * 2 2D 2D/ 1 2D 3D/ 179 2253351E == 2S2 2P3 5F1 * 2 2D 2D/ 1 2F 3D/ 180 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 3F/ 181 22533517 == 2S2 2P3 4S1 3 2P 2P/ 1 2S 1P/ 182 2253351A == 2S2 2P3 4F1 3 2P 2P/ 1 2F 3F/ 183 2253351N == 2S2 2P3 7P1 * 3 2P 2P/ 1 2P 3S/ 184 2253351N == 2S2 2P3 7P1 * 2 2D 2D/ 1 2P 1F/ 185 2253351O == 2S2 2P3 7D1 * 2 2D 2D/ 1 2D 1F/ 186 2253351O == 2S2 2P3 7D1 * 2 2D 2D/ 1 2D 1G/ 187 2253351O == 2S2 2P3 7D1 * 2 2D 2D/ 1 2D 3S/ 188 22533518 == 2S2 2P3 4P1 * 3 2P 2P/ 1 2P 1D/ 189 2253351P == 2S2 2P3 7F1 * 2 2D 2D/ 1 2F 1G/ 190 2253351P == 2S2 2P3 7F1 * 2 2D 2D/ 1 2F 1H/ 191 2253351P == 2S2 2P3 7F1 * 2 2D 2D/ 1 2F 1F/ 192 2253351I == 2S2 2P3 6D1 * 2 2D 2D/ 1 2D 3P/ 193 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 3P/ 194 2253351B == 2S2 2P3 5S1 1 4S 4S/ 1 2S 5S/ 195 2253351B == 2S2 2P3 5S1 1 4S 4S/ 1 2S 3S/ 196 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 2P/ 1 2D 3F/ 197 2253351B == 2S2 2P3 5S1 2 2D 2D/ 1 2S 1D/ 198 2253351C == 2S2 2P3 5P1 2 2D 2D/ 1 2P 3F/ 199 2253351G == 2S2 2P3 6S1 * 2 2D 2D/ 1 2S 3D/ 200 2253351C == 2S2 2P3 5P1 1 4S 4S/ 1 2P 3P/ 201 12543518 == 2S1 2P4 4P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5D/ 202 22533518 == 2S2 2P3 4P1 * 2 2D 2D/ 1 2P 1F/ 203 22533518 == 2S2 2P3 4P1 3 2P 2P/ 1 2P 1P/ 204 2253351C == 2S2 2P3 5P1 2 2D 2D/ 1 2P 1P/ 205 2253351C == 2S2 2P3 5P1 2 2D 2D/ 1 2P 1D/ 206 2253351D == 2S2 2P3 5D1 1 4S 4S/ 1 2D 5D/ 207 2253351H == 2S2 2P3 6P1 * 2 2D 2D/ 1 2P 3D/ 208 22533518 == 2S2 2P3 4P1 3 2P 2P/ 1 2P 1S/ 209 2253351J == 2S2 2P3 6F1 2 2D 2D/ 1 2F 3P/ 210 2253351D == 2S2 2P3 5D1 2 2D 2D/ 1 2D 3G/ 211 2253351E == 2S2 2P3 5F1 1 4S 4S/ 1 2F 5F/ 212 12543518 == 2S1 2P4 4P1 1 2S 2S/ 1 3P 4P/ 1 2P 3P/ 213 2253351D == 2S2 2P3 5D1 2 2D 2D/ 1 2D 1S/ 214 2253351D == 2S2 2P3 5D1 2 2D 2D/ 1 2D 1P/ 215 2253351D == 2S2 2P3 5D1 2 2D 2D/ 1 2D 1D/ 216 2253351D == 2S2 2P3 5D1 * 2 2D 2D/ 1 2D 1F/ 217 2253351E == 2S2 2P3 5F1 2 2D 2D/ 1 2F 3H/ 218 12543519 == 2S1 2P4 4D1 * 1 2S 2S/ 1 3P 4P/ 1 2D 5F/ 219 2253351E == 2S2 2P3 5F1 2 2D 2D/ 1 2F 1D/ 220 2253351E == 2S2 2P3 5F1 2 2D 2D/ 1 2F 1P/ 221 22533519 == 2S2 2P3 4D1 3 2P 2P/ 1 2D 1D/ 222 22533519 == 2S2 2P3 4D1 3 2P 2P/ 1 2D 1P/ 223 2253351I == 2S2 2P3 6D1 1 4S 4S/ 1 2D 3D/ 224 2253351A == 2S2 2P3 4F1 * 3 2P 2P/ 1 2F 1G/ 225 2253351A == 2S2 2P3 4F1 3 2P 2P/ 1 2F 1D/ 226 2253351A == 2S2 2P3 4F1 3 2P 2P/ 1 2F 1F/ 227 2253351J == 2S2 2P3 6F1 1 4S 4S/ 1 2F 3F/ 228 2253351C == 2S2 2P3 5P1 * 2 2D 2D/ 1 2P 3P/ 229 2253351H == 2S2 2P3 6P1 1 4S 4S/ 1 2P 5P/ 230 12543518 == 2S1 2P4 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 3F/ 231 12543518 == 2S1 2P4 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 3P/ 232 2253351O == 2S2 2P3 7D1 * 2 2D 2D/ 1 2D 3P/ 233 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 3S/ 234 1254351C == 2S1 2P4 5P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 1D/ 235 1254351C == 2S1 2P4 5P1 * 1 2S 2S/ 1 3P 2P/ 1 2P 3S/ 236 12543518 == 2S1 2P4 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 1D/ 237 12543518 == 2S1 2P4 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 3D/ 238 12543518 == 2S1 2P4 4P1 1 2S 2S/ 2 1D 2D/ 1 2P 1P/ 239 1254351C == 2S1 2P4 5P1 1 2S 2S/ 3 1S 2S/ 1 2P 3P/ 240 12543518 == 2S1 2P4 4P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1F/ 241 1254351C == 2S1 2P4 5P1 1 2S 2S/ 3 1S 2S/ 1 2P 1P/ 242 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 1S/ 243 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 1P/ 244 12543519 == 2S1 2P4 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 3G/ 245 2253351N == 2S2 2P3 7P1 1 4S 4S/ 1 2P 3P/ 246 12543519 == 2S1 2P4 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3D/ 247 12543519 == 2S1 2P4 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 3F/ 248 2253351J == 2S2 2P3 6F1 * 2 2D 2D/ 1 2F 3G/ 249 2253351M == 2S2 2P3 7S1 * 2 2D 2D/ 1 2S 3D/ 250 12543519 == 2S1 2P4 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 1D/ 251 1254351D == 2S1 2P4 5D1 * 1 2S 2S/ 1 3P 2P/ 1 2D 1F/ 252 1254351D == 2S1 2P4 5D1 1 2S 2S/ 3 1S 2S/ 1 2D 3D/ 253 2253351I == 2S2 2P3 6D1 * 2 2D 2D/ 1 2D 3F/ 254 12543519 == 2S1 2P4 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 1P/ 255 12543519 == 2S1 2P4 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 1S/ 256 1254351D == 2S1 2P4 5D1 1 2S 2S/ 3 1S 2S/ 1 2D 1D/ 257 12543519 == 2S1 2P4 4D1 1 2S 2S/ 2 1D 2D/ 1 2D 3P/ 258 2253351J == 2S2 2P3 6F1 * 2 2D 2D/ 1 2F 3F/ 259 2253351P == 2S2 2P3 7F1 2 2D 2D/ 1 2F 3P/ 260 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 1P/ 261 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 1D/ 262 12543519 == 2S1 2P4 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1F/ 263 12543519 == 2S1 2P4 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1G/ 264 12543519 == 2S1 2P4 4D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3S/ 265 2253351I == 2S2 2P3 6D1 * 2 2D 2D/ 1 2D 3D/ 266 2253351J == 2S2 2P3 6F1 * 2 2D 2D/ 1 2F 3D/ 267 2253351O == 2S2 2P3 7D1 1 4S 4S/ 1 2D 3D/ 268 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 5P/ 269 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 3P/ 270 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 5D/ 271 2253351P == 2S2 2P3 7F1 1 4S 4S/ 1 2F 3F/ 272 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 3D/ 273 2253351E == 2S2 2P3 5F1 3 2P 2P/ 1 2F 3G/ 274 2253351C == 2S2 2P3 5P1 3 2P 2P/ 1 2P 3D/ 275 2253351D == 2S2 2P3 5D1 3 2P 2P/ 1 2D 3F/ 276 2253351G == 2S2 2P3 6S1 1 4S 4S/ 1 2S 3S/ 277 2253351G == 2S2 2P3 6S1 1 4S 4S/ 1 2S 5S/ 278 2253351D == 2S2 2P3 5D1 3 2P 2P/ 1 2D 3P/ 279 2253351B == 2S2 2P3 5S1 3 2P 2P/ 1 2S 3P/ 280 2253351G == 2S2 2P3 6S1 2 2D 2D/ 1 2S 1D/ 281 2253351N == 2S2 2P3 7P1 1 4S 4S/ 1 2P 5P/ 282 2253351H == 2S2 2P3 6P1 2 2D 2D/ 1 2P 3F/ 283 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 3D/ 284 2253351H == 2S2 2P3 6P1 1 4S 4S/ 1 2P 3P/ 285 2253351I == 2S2 2P3 6D1 1 4S 4S/ 1 2D 5D/ 286 2253351H == 2S2 2P3 6P1 2 2D 2D/ 1 2P 1P/ 287 2253351H == 2S2 2P3 6P1 2 2D 2D/ 1 2P 1D/ 288 2253351J == 2S2 2P3 6F1 1 4S 4S/ 1 2F 5F/ 289 2253351I == 2S2 2P3 6D1 2 2D 2D/ 1 2D 3G/ 290 2253351I == 2S2 2P3 6D1 2 2D 2D/ 1 2D 1S/ 291 2253351I == 2S2 2P3 6D1 2 2D 2D/ 1 2D 1P/ 292 2253351I == 2S2 2P3 6D1 2 2D 2D/ 1 2D 1D/ 293 2253351J == 2S2 2P3 6F1 2 2D 2D/ 1 2F 3H/ 294 2253351C == 2S2 2P3 5P1 3 2P 2P/ 1 2P 3P/ 295 2253351J == 2S2 2P3 6F1 2 2D 2D/ 1 2F 1P/ 296 2253351J == 2S2 2P3 6F1 2 2D 2D/ 1 2F 1D/ 297 2253351E == 2S2 2P3 5F1 3 2P 2P/ 1 2F 3D/ 298 2253351P == 2S2 2P3 7F1 * 2 2D 2D/ 1 2F 3G/ 299 2253351O == 2S2 2P3 7D1 * 2 2D 2D/ 1 2D 3F/ 300 2253351P == 2S2 2P3 7F1 * 2 2D 2D/ 1 2F 3F/ 301 2253351N == 2S2 2P3 7P1 * 2 2D 2D/ 1 2P 3D/ 302 2253351O == 2S2 2P3 7D1 * 2 2D 2D/ 1 2D 3D/ 303 2253351P == 2S2 2P3 7F1 * 2 2D 2D/ 1 2F 3D/ 304 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 3P/ 305 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 3D/ 306 2253351H == 2S2 2P3 6P1 * 2 2D 2D/ 1 2P 3P/ 307 2253351E == 2S2 2P3 5F1 3 2P 2P/ 1 2F 3F/ 308 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 2P/ 1 2P 3D/ 309 2253351M == 2S2 2P3 7S1 1 4S 4S/ 1 2S 5S/ 310 2253351M == 2S2 2P3 7S1 1 4S 4S/ 1 2S 3S/ 311 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 3F/ 312 2253351D == 2S2 2P3 5D1 3 2P 2P/ 1 2D 3D/ 313 2253351M == 2S2 2P3 7S1 2 2D 2D/ 1 2S 1D/ 314 2253351N == 2S2 2P3 7P1 2 2D 2D/ 1 2P 3F/ 315 2253351O == 2S2 2P3 7D1 1 4S 4S/ 1 2D 5D/ 316 2253351P == 2S2 2P3 7F1 1 4S 4S/ 1 2F 5F/ 317 2253351N == 2S2 2P3 7P1 2 2D 2D/ 1 2P 1P/ 318 2253351N == 2S2 2P3 7P1 2 2D 2D/ 1 2P 1D/ 319 2253351O == 2S2 2P3 7D1 2 2D 2D/ 1 2D 3G/ 320 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 3P/ 321 2253351P == 2S2 2P3 7F1 2 2D 2D/ 1 2F 3H/ 322 2253351O == 2S2 2P3 7D1 2 2D 2D/ 1 2D 1S/ 323 2253351O == 2S2 2P3 7D1 2 2D 2D/ 1 2D 1P/ 324 2253351O == 2S2 2P3 7D1 2 2D 2D/ 1 2D 1D/ 325 2253351P == 2S2 2P3 7F1 2 2D 2D/ 1 2F 1P/ 326 2253351P == 2S2 2P3 7F1 2 2D 2D/ 1 2F 1D/ 327 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 2P/ 1 2D 3F/ 328 12543519 == 2S1 2P4 4D1 1 2S 2S/ 1 3P 4P/ 1 2D 5P/ 329 2253351B == 2S2 2P3 5S1 3 2P 2P/ 1 2S 1P/ 330 2253351C == 2S2 2P3 5P1 * 3 2P 2P/ 1 2P 1D/ 331 2253351J == 2S2 2P3 6F1 3 2P 2P/ 1 2F 3G/ 332 2253351I == 2S2 2P3 6D1 3 2P 2P/ 1 2D 3F/ 333 2253351C == 2S2 2P3 5P1 3 2P 2P/ 1 2P 1P/ 334 2253351C == 2S2 2P3 5P1 3 2P 2P/ 1 2P 1S/ 335 1254351C == 2S1 2P4 5P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5D/ 336 2253351I == 2S2 2P3 6D1 3 2P 2P/ 1 2D 3P/ 337 2253351H == 2S2 2P3 6P1 3 2P 2P/ 1 2P 3D/ 338 2253351D == 2S2 2P3 5D1 * 3 2P 2P/ 1 2D 1F/ 339 1254351C == 2S1 2P4 5P1 1 2S 2S/ 1 3P 4P/ 1 2P 3P/ 340 1254351D == 2S1 2P4 5D1 * 1 2S 2S/ 1 3P 4P/ 1 2D 5F/ 341 2253351D == 2S2 2P3 5D1 3 2P 2P/ 1 2D 1D/ 342 2253351D == 2S2 2P3 5D1 3 2P 2P/ 1 2D 1P/ 343 2253351E == 2S2 2P3 5F1 * 3 2P 2P/ 1 2F 1G/ 344 2253351E == 2S2 2P3 5F1 3 2P 2P/ 1 2F 1D/ 345 2253351E == 2S2 2P3 5F1 3 2P 2P/ 1 2F 1F/ 346 2253351G == 2S2 2P3 6S1 3 2P 2P/ 1 2S 3P/ 347 2253351N == 2S2 2P3 7P1 * 2 2D 2D/ 1 2P 3P/ 348 2253351H == 2S2 2P3 6P1 3 2P 2P/ 1 2P 3P/ 349 2253351J == 2S2 2P3 6F1 3 2P 2P/ 1 2F 3D/ 350 1254351C == 2S1 2P4 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 3F/ 351 1254351C == 2S1 2P4 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 3P/ 352 1254351C == 2S1 2P4 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 1D/ 353 1254351C == 2S1 2P4 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 1P/ 354 12543518 == 2S1 2P4 4P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5S/ 355 1254351C == 2S1 2P4 5P1 1 2S 2S/ 2 1D 2D/ 1 2P 3D/ 356 1254351D == 2S1 2P4 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 1D/ 357 1254351D == 2S1 2P4 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 3D/ 358 1254351D == 2S1 2P4 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 3G/ 359 1254351D == 2S1 2P4 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 3F/ 360 1254351D == 2S1 2P4 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 1P/ 361 1254351D == 2S1 2P4 5D1 1 2S 2S/ 2 1D 2D/ 1 2D 1S/ 362 1254351C == 2S1 2P4 5P1 * 1 2S 2S/ 2 1D 2D/ 1 2P 1F/ 363 2253351P == 2S2 2P3 7F1 3 2P 2P/ 1 2F 3G/ 364 1254351D == 2S1 2P4 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3P/ 365 2253351O == 2S2 2P3 7D1 3 2P 2P/ 1 2D 3F/ 366 1254351D == 2S1 2P4 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1G/ 367 1254351D == 2S1 2P4 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 1F/ 368 1254351D == 2S1 2P4 5D1 * 1 2S 2S/ 2 1D 2D/ 1 2D 3S/ 369 2253351O == 2S2 2P3 7D1 3 2P 2P/ 1 2D 3P/ 370 2253351J == 2S2 2P3 6F1 3 2P 2P/ 1 2F 3F/ 371 2253351N == 2S2 2P3 7P1 3 2P 2P/ 1 2P 3D/ 372 2253351I == 2S2 2P3 6D1 3 2P 2P/ 1 2D 3D/ 373 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 3P/ 374 2253351M == 2S2 2P3 7S1 3 2P 2P/ 1 2S 3P/ 375 2253351P == 2S2 2P3 7F1 3 2P 2P/ 1 2F 3D/ 376 2253351N == 2S2 2P3 7P1 3 2P 2P/ 1 2P 3P/ 377 2253351G == 2S2 2P3 6S1 3 2P 2P/ 1 2S 1P/ 378 2253351H == 2S2 2P3 6P1 * 3 2P 2P/ 1 2P 1D/ 379 2253351H == 2S2 2P3 6P1 3 2P 2P/ 1 2P 1P/ 380 2253351H == 2S2 2P3 6P1 3 2P 2P/ 1 2P 1S/ 381 2253351I == 2S2 2P3 6D1 * 3 2P 2P/ 1 2D 1F/ 382 2253351I == 2S2 2P3 6D1 3 2P 2P/ 1 2D 1D/ 383 2253351I == 2S2 2P3 6D1 3 2P 2P/ 1 2D 1P/ 384 2253351J == 2S2 2P3 6F1 * 3 2P 2P/ 1 2F 1G/ 385 2253351J == 2S2 2P3 6F1 3 2P 2P/ 1 2F 1D/ 386 2253351J == 2S2 2P3 6F1 3 2P 2P/ 1 2F 1F/ 387 2253351P == 2S2 2P3 7F1 3 2P 2P/ 1 2F 3F/ 388 2253351O == 2S2 2P3 7D1 3 2P 2P/ 1 2D 3D/ 389 2253351M == 2S2 2P3 7S1 3 2P 2P/ 1 2S 1P/ 390 2253351N == 2S2 2P3 7P1 * 3 2P 2P/ 1 2P 1D/ 391 2253351N == 2S2 2P3 7P1 3 2P 2P/ 1 2P 1P/ 392 2253351N == 2S2 2P3 7P1 3 2P 2P/ 1 2P 1S/ 393 2253351O == 2S2 2P3 7D1 * 3 2P 2P/ 1 2D 1F/ 394 2253351O == 2S2 2P3 7D1 3 2P 2P/ 1 2D 1D/ 395 2253351O == 2S2 2P3 7D1 3 2P 2P/ 1 2D 1P/ 396 2253351P == 2S2 2P3 7F1 * 3 2P 2P/ 1 2F 1G/ 397 2253351P == 2S2 2P3 7F1 3 2P 2P/ 1 2F 1F/ 398 2253351P == 2S2 2P3 7F1 3 2P 2P/ 1 2F 1D/ 399 1254351D == 2S1 2P4 5D1 1 2S 2S/ 1 3P 4P/ 1 2D 5P/ 400 1254351C == 2S1 2P4 5P1 * 1 2S 2S/ 1 3P 4P/ 1 2P 5S/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 Map to LS levels : 2 1 2 3 5 4 2 5 5 6 8 8 19 14 7 9 9 20 22 18 13 12 10 13 12 11 15 16 8 17 33 33 14 21 21 20 42 45 35 50 14 9 19 23 19 21 20 32 32 24 36 25 45 42 22 22 27 26 26 27 12 13 46 58 22 22 18 27 26 18 28 29 30 31 47 46 59 35 34 64 32 37 54 38 36 56 102 56 71 39 41 55 41 40 57 49 57 65 60 48 60 48 41 62 49 43 44 55 33 51 52 53 35 59 67 68 42 61 45 36 54 67 73 63 94 94 95 99 47 47 66 58 46 69 58 70 96 72 95 132 59 50 135 50 74 139 107 64 67 75 76 100 73 98 77 78 104 106 101 109 54 79 80 81 97 82 56 83 73 56 68 57 57 68 85 84 86 87 56 49 62 85 71 60 87 86 65 85 48 87 86 88 89 90 62 65 91 92 55 93 59 59 103 105 94 108 99 110 151 151 110 132 96 162 150 150 153 170 99 111 111 111 95 110 112 113 114 115 116 116 153 116 117 228 175 161 147 178 162 96 117 138 107 100 116 118 116 147 120 119 98 98 174 177 169 179 155 122 121 123 154 138 127 127 117 127 129 135 124 125 107 126 127 127 101 101 128 64 129 106 104 109 97 97 139 155 104 129 131 106 130 109 157 182 171 157 149 172 57 102 137 137 133 134 102 71 201 149 136 212 152 328 152 180 218 137 152 140 141 269 176 173 269 156 156 142 144 144 143 193 158 193 144 145 196 158 146 148 199 199 207 229 160 159 207 306 253 223 192 265 163 192 165 164 248 258 227 266 167 166 168 209 249 249 151 181 301 281 184 183 245 347 299 267 232 302 186 232 185 187 132 188 298 300 271 303 189 191 190 259 194 195 170 198 150 197 198 228 279 279 274 294 170 200 200 200 206 206 206 210 202 203 153 198 162 204 205 206 208 206 161 161 210 175 178 147 211 211 211 217 294 274 211 211 169 169 100 175 210 213 178 214 139 215 216 138 275 217 177 174 179 154 154 312 174 217 220 177 219 179 278 275 155 221 135 273 307 222 297 273 171 224 171 182 157 225 226 182 149 201 230 231 173 176 230 268 305 237 201 172 172 212 239 239 335 268 233 339 235 234 152 152 230 270 236 399 270 218 311 237 218 238 340 270 373 373 272 272 218 180 180 244 176 257 247 246 173 156 240 237 231 239 241 231 242 308 304 243 252 244 252 246 247 250 158 320 251 283 320 196 254 255 244 252 256 247 246 257 327 283 260 261 196 193 263 262 264 257 277 276 229 282 199 280 282 306 229 284 284 284 346 346 285 285 285 289 337 348 285 285 223 223 207 282 286 287 288 288 288 293 288 288 227 227 289 253 265 192 253 289 290 291 265 292 293 258 248 266 209 209 348 337 248 293 295 258 296 266 332 372 336 332 331 370 349 331 309 310 281 314 249 313 314 281 245 301 347 245 315 315 315 319 315 315 267 267 316 316 316 321 316 316 271 271 374 374 301 314 317 318 371 376 319 299 302 232 299 319 322 323 302 324 321 300 298 303 259 259 298 321 325 300 326 303 376 371 365 388 369 365 363 387 375 363 279 329 228 330 274 333 294 334 278 278 338 312 275 341 312 342 297 343 297 307 273 344 345 307 201 201 268 335 350 351 335 305 305 339 304 308 270 270 350 340 340 355 340 311 311 350 352 355 272 353 354 212 358 364 359 357 358 357 359 356 308 360 304 361 362 355 351 351 218 269 283 327 358 359 357 364 327 320 328 366 367 328 368 364 346 377 306 378 379 337 348 380 336 336 381 372 332 382 372 383 349 384 349 370 331 385 386 370 374 389 347 390 371 391 376 392 369 369 393 388 365 394 388 395 375 396 375 387 363 398 397 387 335 335 400 339 340 373 399 399 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#adf34_tungsten_w66.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 85450 54287 99821 initially 22122 15754 33921 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Adam Foster Date : 15/05/09 -------------------------------------------------------------------------------- Correct the orbital energy line to insert 0.0 for orbitals not present in the set of configurations. Martin O'Mullane 29-11-2011 -------------------------------------------------------------------------------