ic#al4.dat
Resolved Specific Ion Data Collections
- Ion
- Al4+
- Temperature Range
- 0.431 eV → 4739 eV
ADF04
- Filename
- ic#al4.dat
- Full Path
- adf04/copmm#13/ic#al4.dat
Download data
- Spontaneous Emission: Al+4(i) → Al+4(j) + hv
- Electron Impact Excitation: Al+4(i) + e → Al+4(j) + e
| 22553 2P1.5 | 0.0 cm-1 |
| 22553 2P0.5 | 3252.5 cm-1 |
| 12563 2S0.5 | 376659.0 cm-1 |
| 22543514 4P2.5 | 753932.0 cm-1 |
| 22543514 4P1.5 | 755861.0 cm-1 |
| 22543514 4P0.5 | 757051.0 cm-1 |
| 22543514 2P1.5 | 763330.0 cm-1 |
| 22543514 2P0.5 | 765649.0 cm-1 |
| 22543514 2D2.5 | 789401.0 cm-1 |
| 22543514 2D1.5 | 789424.0 cm-1 |
| 22543515 4P2.5 | 822214.0 cm-1 |
| 22543515 4P1.5 | 822902.0 cm-1 |
| 22543515 4P0.5 | 823706.0 cm-1 |
| 22543515 4D3.5 | 826999.0 cm-1 |
| 22543515 4D2.5 | 828181.0 cm-1 |
| 22543515 4D1.5 | 829131.0 cm-1 |
| 22543515 4D0.5 | 829633.0 cm-1 |
| 22543515 2D2.5 | 832117.0 cm-1 |
| 22543515 2D1.5 | 834068.0 cm-1 |
| 22543515 2S0.5 | 835080.0 cm-1 |
| 22543515 4S1.5 | 835861.0 cm-1 |
| 22543514 2S0.5 | 836215.0 cm-1 |
| 22543515 2P0.5 | 838629.0 cm-1 |
| 22543515 2P1.5 | 838667.0 cm-1 |
| 22543515 2F2.5 | 858838.0 cm-1 |
| 22543515 2F3.5 | 859189.0 cm-1 |
| 22543515 2D1.5 | 865028.0 cm-1 |
| 22543515 2D2.5 | 865260.0 cm-1 |
| 22543515 2P1.5 | 878484.0 cm-1 |
| 22543515 2P0.5 | 879891.0 cm-1 |
| 22543515 2P1.5 | 910315.0 cm-1 |
| 22543515 2P0.5 | 910499.0 cm-1 |
| 22543516 4D3.5 | 913818.0 cm-1 |
| 22543516 4D2.5 | 914113.0 cm-1 |
| 22543516 4D1.5 | 914515.0 cm-1 |
| 22543516 4D0.5 | 914878.0 cm-1 |
| 22543516 4F4.5 | 918197.0 cm-1 |
| 22543516 4F3.5 | 919286.0 cm-1 |
| 22543516 4F2.5 | 920299.0 cm-1 |
| 22543516 4F1.5 | 920971.0 cm-1 |
| 22543516 4P0.5 | 921215.0 cm-1 |
| 22543516 2F3.5 | 921604.0 cm-1 |
| 22543516 4P1.5 | 921923.0 cm-1 |
| 22543516 4P2.5 | 922848.0 cm-1 |
| 22543516 2F2.5 | 923185.0 cm-1 |
| 22543516 2P0.5 | 925693.0 cm-1 |
| 22543516 2D1.5 | 925917.0 cm-1 |
| 22543516 2D2.5 | 927024.0 cm-1 |
| 22543516 2P1.5 | 928252.0 cm-1 |
| 22543516 2G3.5 | 948899.0 cm-1 |
| 22543516 2G4.5 | 948922.0 cm-1 |
| 22543516 2S0.5 | 953208.0 cm-1 |
| 22543516 2P1.5 | 953663.0 cm-1 |
| 22543516 2P0.5 | 954441.0 cm-1 |
| 22543516 2F2.5 | 954471.0 cm-1 |
| 22543516 2F3.5 | 954634.0 cm-1 |
| 22543516 2D2.5 | 955199.0 cm-1 |
| 22543516 2D1.5 | 955761.0 cm-1 |
| 22543516 2D2.5 | 999336.0 cm-1 |
| 22543516 2D1.5 | 999493.0 cm-1 |
| 22543517 4P2.5 | 1003590.0 cm-1 |
| 22543517 4P1.5 | 1005140.0 cm-1 |
| 22543517 4P0.5 | 1006670.0 cm-1 |
| 22543517 2P1.5 | 1007310.0 cm-1 |
| 22543517 2P0.5 | 1009300.0 cm-1 |
| 22543518 4P2.5 | 1028630.0 cm-1 |
| 22543518 4P1.5 | 1029250.0 cm-1 |
| 22543518 4D3.5 | 1030010.0 cm-1 |
| 22543518 4P0.5 | 1030230.0 cm-1 |
| 22543518 4D2.5 | 1030900.0 cm-1 |
| 22543518 4D1.5 | 1032230.0 cm-1 |
| 22543518 2D2.5 | 1032790.0 cm-1 |
| 22543518 4D0.5 | 1032920.0 cm-1 |
| 22543518 2S0.5 | 1033640.0 cm-1 |
| 22543518 4S1.5 | 1034110.0 cm-1 |
| 22543518 2D1.5 | 1034160.0 cm-1 |
| 22543517 2D2.5 | 1037220.0 cm-1 |
| 22543517 2D1.5 | 1037230.0 cm-1 |
| 22543518 2P1.5 | 1038960.0 cm-1 |
| 22543518 2P0.5 | 1039420.0 cm-1 |
| 22543519 4D3.5 | 1060990.0 cm-1 |
| 22543519 4D2.5 | 1061180.0 cm-1 |
| 22543519 4D1.5 | 1061560.0 cm-1 |
| 22543519 4D0.5 | 1062030.0 cm-1 |
| 22543519 4F4.5 | 1062380.0 cm-1 |
| 22543518 2F2.5 | 1062470.0 cm-1 |
| 22543518 2F3.5 | 1062600.0 cm-1 |
| 22543519 4F3.5 | 1063140.0 cm-1 |
| 22543519 4P0.5 | 1063800.0 cm-1 |
| 22543519 4F2.5 | 1064240.0 cm-1 |
| 22543519 4P1.5 | 1064430.0 cm-1 |
| 22543518 2D1.5 | 1064490.0 cm-1 |
| 22543518 2D2.5 | 1064580.0 cm-1 |
| 22543519 2F3.5 | 1064890.0 cm-1 |
| 22543519 4F1.5 | 1065300.0 cm-1 |
| 22543519 4P2.5 | 1065600.0 cm-1 |
| 22543519 2F2.5 | 1065950.0 cm-1 |
| 22543519 2P0.5 | 1066800.0 cm-1 |
| 22543519 2P1.5 | 1067210.0 cm-1 |
| 22543518 2P1.5 | 1067540.0 cm-1 |
| 22543518 2P0.5 | 1068310.0 cm-1 |
| 22543519 2D2.5 | 1068400.0 cm-1 |
| 22543519 2D1.5 | 1069350.0 cm-1 |
| 2254351a 4F4.5 | 1069520.0 cm-1 |
| 2254351a 4F3.5 | 1069550.0 cm-1 |
| 2254351a 4F2.5 | 1069620.0 cm-1 |
| 2254351a 2F3.5 | 1069660.0 cm-1 |
| 2254351a 4F1.5 | 1069870.0 cm-1 |
| 2254351a 2F2.5 | 1069920.0 cm-1 |
| 2254351a 4G5.5 | 1070020.0 cm-1 |
| 2254351a 2G4.5 | 1070050.0 cm-1 |
| 2254351a 4D0.5 | 1070280.0 cm-1 |
| 2254351a 2D1.5 | 1070330.0 cm-1 |
| 2254351a 4D1.5 | 1072220.0 cm-1 |
| 2254351a 4D2.5 | 1072250.0 cm-1 |
| 2254351a 4G4.5 | 1072290.0 cm-1 |
| 2254351a 4G3.5 | 1072310.0 cm-1 |
| 2254351a 4D3.5 | 1072630.0 cm-1 |
| 2254351a 4G2.5 | 1072640.0 cm-1 |
| 2254351a 2G3.5 | 1073440.0 cm-1 |
| 2254351a 2D2.5 | 1073450.0 cm-1 |
| 22543517 2S0.5 | 1083940.0 cm-1 |
| 22543519 2G3.5 | 1094470.0 cm-1 |
| 22543519 2G4.5 | 1094480.0 cm-1 |
| 22543519 2P1.5 | 1096440.0 cm-1 |
| 22543519 2F2.5 | 1096520.0 cm-1 |
| 22543519 2F3.5 | 1096580.0 cm-1 |
| 22543519 2P0.5 | 1096710.0 cm-1 |
| 22543519 2S0.5 | 1096940.0 cm-1 |
| 22543519 2D2.5 | 1096980.0 cm-1 |
| 22543519 2D1.5 | 1097230.0 cm-1 |
| 2254351a 2P0.5 | 1101820.0 cm-1 |
| 2254351a 2P1.5 | 1101820.0 cm-1 |
| 2254351a 2H4.5 | 1102260.0 cm-1 |
| 2254351a 2H5.5 | 1102260.0 cm-1 |
| 2254351a 2D2.5 | 1102440.0 cm-1 |
| 2254351a 2D1.5 | 1102440.0 cm-1 |
| 2254351a 2F3.5 | 1103030.0 cm-1 |
| 2254351a 2F2.5 | 1103030.0 cm-1 |
| 2254351a 2G3.5 | 1103160.0 cm-1 |
| 2254351a 2G4.5 | 1103160.0 cm-1 |
| 22543518 2P1.5 | 1110960.0 cm-1 |
| 22543518 2P0.5 | 1110970.0 cm-1 |
| 22543519 2D2.5 | 1142880.0 cm-1 |
| 22543519 2D1.5 | 1142960.0 cm-1 |
| 2254351a 2F2.5 | 1149800.0 cm-1 |
| 2254351a 2F3.5 | 1149800.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R % Parentage 1 22553 == 2S2 2P5 100 1 2P 2P/ 2 22553 == 2S2 2P5 100 1 2P 2P/ 3 12563 == 2S1 2P6 99 1 2S 2S/ 4 22543514 == 2S2 2P4 3S1 100 1 3P 3P/ 1 2S 4P/ 5 22543514 == 2S2 2P4 3S1 98 1 3P 3P/ 1 2S 4P/ 6 22543514 == 2S2 2P4 3S1 100 1 3P 3P/ 1 2S 4P/ 7 22543514 == 2S2 2P4 3S1 98 1 3P 3P/ 1 2S 2P/ 8 22543514 == 2S2 2P4 3S1 100 1 3P 3P/ 1 2S 2P/ 9 22543514 == 2S2 2P4 3S1 100 2 1D 1D/ 1 2S 2D/ 10 22543514 == 2S2 2P4 3S1 100 2 1D 1D/ 1 2S 2D/ 11 22543515 == 2S2 2P4 3P1 97 1 3P 3P/ 1 2P 4P/ 12 22543515 == 2S2 2P4 3P1 96 1 3P 3P/ 1 2P 4P/ 13 22543515 == 2S2 2P4 3P1 99 1 3P 3P/ 1 2P 4P/ 14 22543515 == 2S2 2P4 3P1 100 1 3P 3P/ 1 2P 4D/ 15 22543515 == 2S2 2P4 3P1 91 1 3P 3P/ 1 2P 4D/ 16 22543515 == 2S2 2P4 3P1 96 1 3P 3P/ 1 2P 4D/ 17 22543515 == 2S2 2P4 3P1 99 1 3P 3P/ 1 2P 4D/ 18 22543515 == 2S2 2P4 3P1 93 1 3P 3P/ 1 2P 2D/ 19 22543515 == 2S2 2P4 3P1 96 1 3P 3P/ 1 2P 2D/ 20 22543515 == 2S2 2P4 3P1 80 1 3P 3P/ 1 2P 2S/ 21 22543515 == 2S2 2P4 3P1 98 1 3P 3P/ 1 2P 4S/ 22 22543514 == 2S2 2P4 3S1 99 3 1S 1S/ 1 2S 2S/ 23 22543515 == 2S2 2P4 3P1 55 1 3P 3P/ 1 2P 2P/ 24 22543515 == 2S2 2P4 3P1 67 1 3P 3P/ 1 2P 2P/ 25 22543515 == 2S2 2P4 3P1 99 2 1D 1D/ 1 2P 2F/ 26 22543515 == 2S2 2P4 3P1 100 2 1D 1D/ 1 2P 2F/ 27 22543515 == 2S2 2P4 3P1 99 2 1D 1D/ 1 2P 2D/ 28 22543515 == 2S2 2P4 3P1 99 2 1D 1D/ 1 2P 2D/ 29 22543515 == 2S2 2P4 3P1 69 2 1D 1D/ 1 2P 2P/ 30 22543515 == 2S2 2P4 3P1 68 2 1D 1D/ 1 2P 2P/ 31 22543515 == 2S2 2P4 3P1 99 3 1S 1S/ 1 2P 2P/ 32 22543515 == 2S2 2P4 3P1 97 3 1S 1S/ 1 2P 2P/ 33 22543516 == 2S2 2P4 3D1 97 1 3P 3P/ 1 2D 4D/ 34 22543516 == 2S2 2P4 3D1 96 1 3P 3P/ 1 2D 4D/ 35 22543516 == 2S2 2P4 3D1 96 1 3P 3P/ 1 2D 4D/ 36 22543516 == 2S2 2P4 3D1 98 1 3P 3P/ 1 2D 4D/ 37 22543516 == 2S2 2P4 3D1 100 1 3P 3P/ 1 2D 4F/ 38 22543516 == 2S2 2P4 3D1 84 1 3P 3P/ 1 2D 4F/ 39 22543516 == 2S2 2P4 3D1 91 1 3P 3P/ 1 2D 4F/ 40 22543516 == 2S2 2P4 3D1 96 1 3P 3P/ 1 2D 4F/ 41 22543516 == 2S2 2P4 3D1 99 1 3P 3P/ 1 2D 4P/ 42 22543516 == 2S2 2P4 3D1 85 1 3P 3P/ 1 2D 2F/ 43 22543516 == 2S2 2P4 3D1 95 1 3P 3P/ 1 2D 4P/ 44 22543516 == 2S2 2P4 3D1 80 1 3P 3P/ 1 2D 4P/ 45 22543516 == 2S2 2P4 3D1 78 1 3P 3P/ 1 2D 2F/ 46 22543516 == 2S2 2P4 3D1 91 1 3P 3P/ 1 2D 2P/ 47 22543516 == 2S2 2P4 3D1 66 1 3P 3P/ 1 2D 2D/ 48 22543516 == 2S2 2P4 3D1 89 1 3P 3P/ 1 2D 2D/ 49 22543516 == 2S2 2P4 3D1 68 1 3P 3P/ 1 2D 2P/ 50 22543516 == 2S2 2P4 3D1 100 2 1D 1D/ 1 2D 2G/ 51 22543516 == 2S2 2P4 3D1 100 2 1D 1D/ 1 2D 2G/ 52 22543516 == 2S2 2P4 3D1 95 2 1D 1D/ 1 2D 2S/ 53 22543516 == 2S2 2P4 3D1 94 2 1D 1D/ 1 2D 2P/ 54 22543516 == 2S2 2P4 3D1 88 2 1D 1D/ 1 2D 2P/ 55 22543516 == 2S2 2P4 3D1 89 2 1D 1D/ 1 2D 2F/ 56 22543516 == 2S2 2P4 3D1 100 2 1D 1D/ 1 2D 2F/ 57 22543516 == 2S2 2P4 3D1 85 2 1D 1D/ 1 2D 2D/ 58 22543516 == 2S2 2P4 3D1 94 2 1D 1D/ 1 2D 2D/ 59 22543516 == 2S2 2P4 3D1 99 3 1S 1S/ 1 2D 2D/ 60 22543516 == 2S2 2P4 3D1 99 3 1S 1S/ 1 2D 2D/ 61 22543517 == 2S2 2P4 4S1 100 1 3P 3P/ 1 2S 4P/ 62 22543517 == 2S2 2P4 4S1 76 1 3P 3P/ 1 2S 4P/ 63 22543517 == 2S2 2P4 4S1 96 1 3P 3P/ 1 2S 4P/ 64 22543517 == 2S2 2P4 4S1 76 1 3P 3P/ 1 2S 2P/ 65 22543517 == 2S2 2P4 4S1 96 1 3P 3P/ 1 2S 2P/ 66 22543518 == 2S2 2P4 4P1 89 1 3P 3P/ 1 2P 4P/ 67 22543518 == 2S2 2P4 4P1 85 1 3P 3P/ 1 2P 4P/ 68 22543518 == 2S2 2P4 4P1 100 1 3P 3P/ 1 2P 4D/ 69 22543518 == 2S2 2P4 4P1 90 1 3P 3P/ 1 2P 4P/ 70 22543518 == 2S2 2P4 4P1 51 1 3P 3P/ 1 2P 4D/ 71 22543518 == 2S2 2P4 4P1 78 1 3P 3P/ 1 2P 4D/ 72 22543518 == 2S2 2P4 4P1 55 1 3P 3P/ 1 2P 2D/ 73 22543518 == 2S2 2P4 4P1 96 1 3P 3P/ 1 2P 4D/ 74 22543518 == 2S2 2P4 4P1 89 1 3P 3P/ 1 2P 2S/ 75 22543518 == 2S2 2P4 4P1 70 1 3P 3P/ 1 2P 4S/ 76 22543518 == 2S2 2P4 4P1 60 1 3P 3P/ 1 2P 2D/ 77 22543517 == 2S2 2P4 4S1 100 2 1D 1D/ 1 2S 2D/ 78 22543517 == 2S2 2P4 4S1 100 2 1D 1D/ 1 2S 2D/ 79 22543518 == 2S2 2P4 4P1 89 1 3P 3P/ 1 2P 2P/ 80 22543518 == 2S2 2P4 4P1 86 1 3P 3P/ 1 2P 2P/ 81 22543519 == 2S2 2P4 4D1 88 1 3P 3P/ 1 2D 4D/ 82 22543519 == 2S2 2P4 4D1 85 1 3P 3P/ 1 2D 4D/ 83 22543519 == 2S2 2P4 4D1 83 1 3P 3P/ 1 2D 4D/ 84 22543519 == 2S2 2P4 4D1 86 1 3P 3P/ 1 2D 4D/ 85 22543519 == 2S2 2P4 4D1 100 1 3P 3P/ 1 2D 4F/ 86 22543518 == 2S2 2P4 4P1 99 2 1D 1D/ 1 2P 2F/ 87 22543518 == 2S2 2P4 4P1 100 2 1D 1D/ 1 2P 2F/ 88 22543519 == 2S2 2P4 4D1 48 1 3P 3P/ 1 2D 4F/ 89 22543519 == 2S2 2P4 4D1 88 1 3P 3P/ 1 2D 4P/ 90 22543519 == 2S2 2P4 4D1 61 1 3P 3P/ 1 2D 4F/ 91 22543519 == 2S2 2P4 4D1 74 1 3P 3P/ 1 2D 4P/ 92 22543518 == 2S2 2P4 4P1 99 2 1D 1D/ 1 2P 2D/ 93 22543518 == 2S2 2P4 4P1 99 2 1D 1D/ 1 2P 2D/ 94 22543519 == 2S2 2P4 4D1 50 1 3P 3P/ 1 2D 2F/ 95 22543519 == 2S2 2P4 4D1 80 1 3P 3P/ 1 2D 4F/ 96 22543519 == 2S2 2P4 4D1 75 1 3P 3P/ 1 2D 4P/ 97 22543519 == 2S2 2P4 4D1 66 1 3P 3P/ 1 2D 2F/ 98 22543519 == 2S2 2P4 4D1 92 1 3P 3P/ 1 2D 2P/ 99 22543519 == 2S2 2P4 4D1 46 1 3P 3P/ 1 2D 2P/ 100 22543518 == 2S2 2P4 4P1 93 2 1D 1D/ 1 2P 2P/ 101 22543518 == 2S2 2P4 4P1 91 2 1D 1D/ 1 2P 2P/ 102 22543519 == 2S2 2P4 4D1 81 1 3P 3P/ 1 2D 2D/ 103 22543519 == 2S2 2P4 4D1 49 1 3P 3P/ 1 2D 2D/ 104 2254351A == 2S2 2P4 4F1 74 1 3P 3P/ 1 2F 4F/ 105 2254351A == 2S2 2P4 4F1 66 1 3P 3P/ 1 2F 4F/ 106 2254351A == 2S2 2P4 4F1 53 1 3P 3P/ 1 2F 4F/ 107 2254351A == 2S2 2P4 4F1 65 1 3P 3P/ 1 2F 2F/ 108 2254351A == 2S2 2P4 4F1 54 1 3P 3P/ 1 2F 4F/ 109 2254351A == 2S2 2P4 4F1 40 1 3P 3P/ 1 2F 2F/ 110 2254351A == 2S2 2P4 4F1 100 1 3P 3P/ 1 2F 4G/ 111 2254351A == 2S2 2P4 4F1 * 73 1 3P 3P/ 1 2F 2G/ 112 2254351A == 2S2 2P4 4F1 100 1 3P 3P/ 1 2F 4D/ 113 2254351A == 2S2 2P4 4F1 52 1 3P 3P/ 1 2F 2D/ 114 2254351A == 2S2 2P4 4F1 26 1 3P 3P/ 1 2F 4D/ 115 2254351A == 2S2 2P4 4F1 44 1 3P 3P/ 1 2F 4D/ 116 2254351A == 2S2 2P4 4F1 54 1 3P 3P/ 1 2F 4G/ 117 2254351A == 2S2 2P4 4F1 46 1 3P 3P/ 1 2F 4G/ 118 2254351A == 2S2 2P4 4F1 50 1 3P 3P/ 1 2F 4D/ 119 2254351A == 2S2 2P4 4F1 52 1 3P 3P/ 1 2F 4G/ 120 2254351A == 2S2 2P4 4F1 * 27 1 3P 3P/ 1 2F 2G/ 121 2254351A == 2S2 2P4 4F1 28 1 3P 3P/ 1 2F 2D/ 122 22543517 == 2S2 2P4 4S1 96 3 1S 1S/ 1 2S 2S/ 123 22543519 == 2S2 2P4 4D1 100 2 1D 1D/ 1 2D 2G/ 124 22543519 == 2S2 2P4 4D1 100 2 1D 1D/ 1 2D 2G/ 125 22543519 == 2S2 2P4 4D1 99 2 1D 1D/ 1 2D 2P/ 126 22543519 == 2S2 2P4 4D1 94 2 1D 1D/ 1 2D 2F/ 127 22543519 == 2S2 2P4 4D1 100 2 1D 1D/ 1 2D 2F/ 128 22543519 == 2S2 2P4 4D1 63 2 1D 1D/ 1 2D 2P/ 129 22543519 == 2S2 2P4 4D1 61 2 1D 1D/ 1 2D 2S/ 130 22543519 == 2S2 2P4 4D1 94 2 1D 1D/ 1 2D 2D/ 131 22543519 == 2S2 2P4 4D1 98 2 1D 1D/ 1 2D 2D/ 132 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2P/ 133 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2P/ 134 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2H/ 135 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2H/ 136 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2D/ 137 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2D/ 138 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2F/ 139 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2F/ 140 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2G/ 141 2254351A == 2S2 2P4 4F1 100 2 1D 1D/ 1 2F 2G/ 142 22543518 == 2S2 2P4 4P1 100 3 1S 1S/ 1 2P 2P/ 143 22543518 == 2S2 2P4 4P1 99 3 1S 1S/ 1 2P 2P/ 144 22543519 == 2S2 2P4 4D1 100 3 1S 1S/ 1 2D 2D/ 145 22543519 == 2S2 2P4 4D1 100 3 1S 1S/ 1 2D 2D/ 146 2254351A == 2S2 2P4 4F1 100 3 1S 1S/ 1 2F 2F/ 147 2254351A == 2S2 2P4 4F1 100 3 1S 1S/ 1 2F 2F/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#al13-04_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level IC YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 75 95 75 75 75 Parity 1 Parity 2 Allowed 2208 2296 3305 initially 2208 2296 3305 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 27/06/06 --------------------------------------------------------------------------------