ic#ge6.dat
Resolved Specific Ion Data Collections
- Ion
- Ge6+
- Temperature Range
- 0.844 eV → 9306 eV
ADF04
- Filename
- ic#ge6.dat
- Full Path
- adf04/copmm#32/ic#ge6.dat
Download data
- Spontaneous Emission: Ge+6(i) → Ge+6(j) + hv
- Electron Impact Excitation: Ge+6(i) + e → Ge+6(j) + e
| 65586 3F4.0 | 0.0 cm-1 |
| 65586 3F3.0 | 3792.6 cm-1 |
| 65586 3F2.0 | 6007.8 cm-1 |
| 65586 1D2.0 | 19966.4 cm-1 |
| 65586 3P1.0 | 25538.5 cm-1 |
| 65586 3P2.0 | 25548.1 cm-1 |
| 65586 3P0.0 | 26030.7 cm-1 |
| 65586 1G4.0 | 31526.5 cm-1 |
| 65586 1S0.0 | 73937.9 cm-1 |
| 65576517 5F5.0 | 394478.0 cm-1 |
| 65576517 5F4.0 | 396915.0 cm-1 |
| 65576517 5F3.0 | 398899.0 cm-1 |
| 65576517 5F2.0 | 400293.0 cm-1 |
| 65576517 5F1.0 | 401177.0 cm-1 |
| 65576517 3F4.0 | 404082.0 cm-1 |
| 65576517 3F3.0 | 407425.0 cm-1 |
| 65576517 3F2.0 | 409543.0 cm-1 |
| 65576517 5P3.0 | 419191.0 cm-1 |
| 65576517 5P2.0 | 419598.0 cm-1 |
| 65576517 5P1.0 | 421098.0 cm-1 |
| 65576517 3G5.0 | 421794.0 cm-1 |
| 65576517 3G4.0 | 422886.0 cm-1 |
| 65576517 3G3.0 | 424915.0 cm-1 |
| 65576517 3P2.0 | 427602.0 cm-1 |
| 65576517 3P1.0 | 427770.0 cm-1 |
| 65576517 1G4.0 | 427826.0 cm-1 |
| 65576517 3P0.0 | 429194.0 cm-1 |
| 65576517 3H6.0 | 430066.0 cm-1 |
| 65576517 3P2.0 | 430352.0 cm-1 |
| 65576517 3H5.0 | 431291.0 cm-1 |
| 65576517 3P1.0 | 431701.0 cm-1 |
| 65576517 3D3.0 | 432990.0 cm-1 |
| 65576517 3H4.0 | 433521.0 cm-1 |
| 65576517 3P0.0 | 434340.0 cm-1 |
| 65576517 3D1.0 | 434831.0 cm-1 |
| 65576517 3D2.0 | 435061.0 cm-1 |
| 65576517 1H5.0 | 436242.0 cm-1 |
| 65576517 1P1.0 | 440048.0 cm-1 |
| 65576517 1D2.0 | 440645.0 cm-1 |
| 65576517 3F2.0 | 452904.0 cm-1 |
| 65576517 3F3.0 | 453405.0 cm-1 |
| 65576517 3F4.0 | 454385.0 cm-1 |
| 65576517 1F3.0 | 458451.0 cm-1 |
| 65576517 3D1.0 | 484037.0 cm-1 |
| 65576517 3D2.0 | 484558.0 cm-1 |
| 65576517 3D3.0 | 485637.0 cm-1 |
| 65576517 1D2.0 | 489712.0 cm-1 |
| 65576518 5D4.0 | 507432.0 cm-1 |
| 65576518 5F5.0 | 507911.0 cm-1 |
| 65576518 5F3.0 | 510135.0 cm-1 |
| 65576518 5F4.0 | 511775.0 cm-1 |
| 65576518 5F2.0 | 512176.0 cm-1 |
| 65576518 5G6.0 | 513207.0 cm-1 |
| 65576518 5F1.0 | 513625.0 cm-1 |
| 65576518 5G5.0 | 513629.0 cm-1 |
| 65576518 5G3.0 | 514153.0 cm-1 |
| 65576518 5G4.0 | 515259.0 cm-1 |
| 65576518 5G2.0 | 515652.0 cm-1 |
| 65576518 5D3.0 | 516318.0 cm-1 |
| 65576518 5D2.0 | 516992.0 cm-1 |
| 65576518 5D1.0 | 517653.0 cm-1 |
| 65576518 5D0.0 | 518054.0 cm-1 |
| 65576518 3G5.0 | 518344.0 cm-1 |
| 65576518 3F4.0 | 518814.0 cm-1 |
| 65576518 3F3.0 | 521213.0 cm-1 |
| 65576518 3G4.0 | 521740.0 cm-1 |
| 65576518 3D3.0 | 522850.0 cm-1 |
| 65576518 3F2.0 | 523440.0 cm-1 |
| 65576518 3G3.0 | 524076.0 cm-1 |
| 65576518 3D2.0 | 524756.0 cm-1 |
| 65576518 5S2.0 | 525204.0 cm-1 |
| 65576518 3D1.0 | 526165.0 cm-1 |
| 65576518 3H5.0 | 534504.0 cm-1 |
| 65576518 3F4.0 | 534842.0 cm-1 |
| 65576518 3P1.0 | 534926.0 cm-1 |
| 65576518 5D2.0 | 535574.0 cm-1 |
| 65576518 5D3.0 | 535948.0 cm-1 |
| 65576518 3H4.0 | 536772.0 cm-1 |
| 65576518 5D0.0 | 536930.0 cm-1 |
| 65576518 5D1.0 | 537540.0 cm-1 |
| 65576518 3H6.0 | 538003.0 cm-1 |
| 65576518 5D4.0 | 538210.0 cm-1 |
| 65576518 3F3.0 | 538986.0 cm-1 |
| 65576518 1G4.0 | 539985.0 cm-1 |
| 65576518 3P0.0 | 540330.0 cm-1 |
| 65576518 3P2.0 | 540586.0 cm-1 |
| 65576518 3G5.0 | 540785.0 cm-1 |
| 65576518 1F3.0 | 541053.0 cm-1 |
| 65576518 3F2.0 | 541072.0 cm-1 |
| 65576518 5P1.0 | 541323.0 cm-1 |
| 65576518 5P3.0 | 541489.0 cm-1 |
| 65576518 3G5.0 | 541547.0 cm-1 |
| 65576518 3I6.0 | 542154.0 cm-1 |
| 65576518 5P2.0 | 542531.0 cm-1 |
| 65576518 3F2.0 | 542870.0 cm-1 |
| 65576518 1H5.0 | 542878.0 cm-1 |
| 65576518 3G4.0 | 542981.0 cm-1 |
| 65576518 3G3.0 | 543031.0 cm-1 |
| 65576518 3S1.0 | 543271.0 cm-1 |
| 65576518 3D3.0 | 543666.0 cm-1 |
| 65576518 3D1.0 | 544153.0 cm-1 |
| 65576518 3I5.0 | 544662.0 cm-1 |
| 65576518 1S0.0 | 544897.0 cm-1 |
| 65576518 3G4.0 | 544935.0 cm-1 |
| 65576518 3I7.0 | 545180.0 cm-1 |
| 65576518 3P2.0 | 545381.0 cm-1 |
| 65576518 3D3.0 | 546144.0 cm-1 |
| 65576518 3P1.0 | 546818.0 cm-1 |
| 65576518 3D2.0 | 547212.0 cm-1 |
| 65576518 3D3.0 | 547347.0 cm-1 |
| 65576518 3G3.0 | 547916.0 cm-1 |
| 65576518 3D1.0 | 548008.0 cm-1 |
| 65576518 3D2.0 | 548093.0 cm-1 |
| 65576518 3D1.0 | 549392.0 cm-1 |
| 65576518 1I6.0 | 549454.0 cm-1 |
| 65576518 3D2.0 | 550597.0 cm-1 |
| 65576518 3F4.0 | 550816.0 cm-1 |
| 65576518 3H6.0 | 551606.0 cm-1 |
| 65576518 3F3.0 | 552029.0 cm-1 |
| 65576518 3P0.0 | 552262.0 cm-1 |
| 65576518 3H5.0 | 552423.0 cm-1 |
| 65576518 1D2.0 | 553275.0 cm-1 |
| 65576518 3H4.0 | 553762.0 cm-1 |
| 65576518 3S1.0 | 553858.0 cm-1 |
| 65576518 1D2.0 | 554054.0 cm-1 |
| 65576518 1P1.0 | 554381.0 cm-1 |
| 65576518 1G4.0 | 554759.0 cm-1 |
| 65576518 3P2.0 | 556679.0 cm-1 |
| 65576518 1F3.0 | 558070.0 cm-1 |
| 65576518 1H5.0 | 558966.0 cm-1 |
| 65576518 1P1.0 | 559365.0 cm-1 |
| 65576518 3P1.0 | 560555.0 cm-1 |
| 65576518 3P0.0 | 560686.0 cm-1 |
| 65576518 1D2.0 | 567105.0 cm-1 |
| 65576518 3G3.0 | 567899.0 cm-1 |
| 65576518 3G4.0 | 569014.0 cm-1 |
| 65576518 3D3.0 | 570397.0 cm-1 |
| 65576518 3F2.0 | 571852.0 cm-1 |
| 65576518 3F3.0 | 572071.0 cm-1 |
| 65576518 1G4.0 | 572667.0 cm-1 |
| 65576518 3D1.0 | 572789.0 cm-1 |
| 65576518 3D2.0 | 573000.0 cm-1 |
| 65576518 3G5.0 | 573012.0 cm-1 |
| 65576518 3F4.0 | 573664.0 cm-1 |
| 65576518 1F3.0 | 579887.0 cm-1 |
| 65576518 3P2.0 | 596008.0 cm-1 |
| 65576518 3P1.0 | 596681.0 cm-1 |
| 65576518 3F2.0 | 597446.0 cm-1 |
| 65576518 3P0.0 | 597745.0 cm-1 |
| 65576518 3F3.0 | 599426.0 cm-1 |
| 65576518 3F4.0 | 602516.0 cm-1 |
| 65576518 1P1.0 | 604273.0 cm-1 |
| 65576518 1F3.0 | 604745.0 cm-1 |
| 65576518 3D1.0 | 608168.0 cm-1 |
| 65576518 3D2.0 | 608599.0 cm-1 |
| 65576518 1D2.0 | 609958.0 cm-1 |
| 65576518 3D3.0 | 610893.0 cm-1 |
| 65576519 5F5.0 | 680496.0 cm-1 |
| 65576519 5F4.0 | 681484.0 cm-1 |
| 65576519 5G6.0 | 682430.0 cm-1 |
| 65576519 5F3.0 | 682766.0 cm-1 |
| 65576519 5H7.0 | 683912.0 cm-1 |
| 65576519 5G5.0 | 684055.0 cm-1 |
| 65576519 5P3.0 | 684161.0 cm-1 |
| 65576519 5F2.0 | 684439.0 cm-1 |
| 65576519 5H6.0 | 685240.0 cm-1 |
| 65576519 5F1.0 | 685630.0 cm-1 |
| 65576519 5G4.0 | 685673.0 cm-1 |
| 65576519 5D4.0 | 686913.0 cm-1 |
| 65576519 3G5.0 | 686985.0 cm-1 |
| 65576519 5P2.0 | 686988.0 cm-1 |
| 65576519 5G3.0 | 687072.0 cm-1 |
| 65576519 5H5.0 | 687484.0 cm-1 |
| 65576519 3D3.0 | 687657.0 cm-1 |
| 65576519 3H6.0 | 688108.0 cm-1 |
| 65576519 5G2.0 | 688203.0 cm-1 |
| 65576519 5H4.0 | 688958.0 cm-1 |
| 65576519 5P1.0 | 689107.0 cm-1 |
| 65576519 3G4.0 | 689234.0 cm-1 |
| 65576519 5D3.0 | 689468.0 cm-1 |
| 65576519 3D2.0 | 689762.0 cm-1 |
| 65576519 5H3.0 | 689950.0 cm-1 |
| 65576519 5D0.0 | 690777.0 cm-1 |
| 65576519 5D2.0 | 690790.0 cm-1 |
| 65576519 5D1.0 | 691005.0 cm-1 |
| 65576519 3H5.0 | 691044.0 cm-1 |
| 65576519 3G3.0 | 691371.0 cm-1 |
| 65576519 3D1.0 | 692144.0 cm-1 |
| 65576519 3H4.0 | 692944.0 cm-1 |
| 65576519 3F4.0 | 693938.0 cm-1 |
| 65576519 3F3.0 | 695404.0 cm-1 |
| 65576519 3P2.0 | 695582.0 cm-1 |
| 65576519 3F2.0 | 696698.0 cm-1 |
| 65576519 3P1.0 | 697948.0 cm-1 |
| 65576519 3P0.0 | 699191.0 cm-1 |
| 65576519 5P1.0 | 703922.0 cm-1 |
| 65576519 5P2.0 | 704292.0 cm-1 |
| 65576519 5P3.0 | 705013.0 cm-1 |
| 65576519 3D3.0 | 707178.0 cm-1 |
| 65576519 5F4.0 | 707603.0 cm-1 |
| 65576519 5F5.0 | 707689.0 cm-1 |
| 65576519 5F3.0 | 707803.0 cm-1 |
| 65576519 5F2.0 | 708062.0 cm-1 |
| 65576519 3I6.0 | 708187.0 cm-1 |
| 65576519 3I7.0 | 708194.0 cm-1 |
| 65576519 5F1.0 | 708330.0 cm-1 |
| 65576519 3D2.0 | 708932.0 cm-1 |
| 65576519 1F3.0 | 709011.0 cm-1 |
| 65576519 3H5.0 | 709124.0 cm-1 |
| 65576519 3G5.0 | 709822.0 cm-1 |
| 65576519 3H6.0 | 710057.0 cm-1 |
| 65576519 3G4.0 | 710137.0 cm-1 |
| 65576519 3D1.0 | 710327.0 cm-1 |
| 65576519 3F4.0 | 710515.0 cm-1 |
| 65576519 3P0.0 | 710895.0 cm-1 |
| 65576519 3F3.0 | 711064.0 cm-1 |
| 65576519 3I5.0 | 711503.0 cm-1 |
| 65576519 5D1.0 | 711720.0 cm-1 |
| 65576519 3G3.0 | 711876.0 cm-1 |
| 65576519 3F2.0 | 711910.0 cm-1 |
| 65576519 3P2.0 | 712279.0 cm-1 |
| 65576519 5D4.0 | 712410.0 cm-1 |
| 65576519 1I6.0 | 712587.0 cm-1 |
| 65576519 3H4.0 | 712858.0 cm-1 |
| 65576519 5D3.0 | 713162.0 cm-1 |
| 65576519 1H5.0 | 713526.0 cm-1 |
| 65576519 3P1.0 | 713754.0 cm-1 |
| 65576519 3F4.0 | 713783.0 cm-1 |
| 65576519 5D2.0 | 713852.0 cm-1 |
| 65576519 3F3.0 | 714594.0 cm-1 |
| 65576519 3P1.0 | 714870.0 cm-1 |
| 65576519 1D2.0 | 714929.0 cm-1 |
| 65576519 1G4.0 | 714949.0 cm-1 |
| 65576519 5D0.0 | 714992.0 cm-1 |
| 65576519 3J7.0 | 715163.0 cm-1 |
| 65576519 3J8.0 | 715267.0 cm-1 |
| 65576519 3D3.0 | 715548.0 cm-1 |
| 65576519 3D2.0 | 715787.0 cm-1 |
| 65576519 3D1.0 | 716169.0 cm-1 |
| 65576519 3G5.0 | 716267.0 cm-1 |
| 65576519 3D3.0 | 716309.0 cm-1 |
| 65576519 3F4.0 | 716395.0 cm-1 |
| 65576519 3F2.0 | 716459.0 cm-1 |
| 65576519 3F3.0 | 716927.0 cm-1 |
| 65576519 3P0.0 | 717239.0 cm-1 |
| 65576519 1F3.0 | 717593.0 cm-1 |
| 65576519 3D2.0 | 717620.0 cm-1 |
| 65576519 3J6.0 | 718016.0 cm-1 |
| 65576519 3D1.0 | 718226.0 cm-1 |
| 65576519 3G4.0 | 718680.0 cm-1 |
| 65576519 1J7.0 | 718896.0 cm-1 |
| 65576519 3F2.0 | 719015.0 cm-1 |
| 65576519 3I7.0 | 719552.0 cm-1 |
| 65576519 3G3.0 | 719804.0 cm-1 |
| 65576519 3D3.0 | 719966.0 cm-1 |
| 65576519 3I6.0 | 720052.0 cm-1 |
| 65576519 3P2.0 | 720371.0 cm-1 |
| 65576519 1H5.0 | 720414.0 cm-1 |
| 65576519 3G4.0 | 720502.0 cm-1 |
| 65576519 3F3.0 | 720791.0 cm-1 |
| 65576519 3G5.0 | 721141.0 cm-1 |
| 65576519 1P1.0 | 721141.0 cm-1 |
| 65576519 3H6.0 | 721207.0 cm-1 |
| 65576519 3D2.0 | 721333.0 cm-1 |
| 65576519 1G4.0 | 721717.0 cm-1 |
| 65576519 1F3.0 | 722108.0 cm-1 |
| 65576519 3S1.0 | 722213.0 cm-1 |
| 65576519 3I5.0 | 722323.0 cm-1 |
| 65576519 3F2.0 | 722668.0 cm-1 |
| 65576519 3H4.0 | 723408.0 cm-1 |
| 65576519 3H5.0 | 723441.0 cm-1 |
| 65576519 1F3.0 | 724560.0 cm-1 |
| 65576519 1P1.0 | 724835.0 cm-1 |
| 65576519 1I6.0 | 725209.0 cm-1 |
| 65576519 3D1.0 | 726119.0 cm-1 |
| 65576519 1D2.0 | 726670.0 cm-1 |
| 65576519 3G3.0 | 726789.0 cm-1 |
| 65576519 3F4.0 | 726909.0 cm-1 |
| 65576519 3P2.0 | 730876.0 cm-1 |
| 65576519 1S0.0 | 732291.0 cm-1 |
| 65576519 3P1.0 | 734183.0 cm-1 |
| 65576519 3P0.0 | 736985.0 cm-1 |
| 65576519 1G4.0 | 739161.0 cm-1 |
| 65576519 1P1.0 | 739368.0 cm-1 |
| 65576519 3H4.0 | 740360.0 cm-1 |
| 65576519 3F2.0 | 740653.0 cm-1 |
| 65576519 3H5.0 | 741078.0 cm-1 |
| 65576519 3F3.0 | 741372.0 cm-1 |
| 65576519 3D3.0 | 741457.0 cm-1 |
| 65576519 3D2.0 | 741575.0 cm-1 |
| 65576519 3D1.0 | 741754.0 cm-1 |
| 65576519 3H6.0 | 742151.0 cm-1 |
| 65576519 3G3.0 | 742197.0 cm-1 |
| 65576519 3G4.0 | 742359.0 cm-1 |
| 65576519 1H5.0 | 742706.0 cm-1 |
| 65576519 3F4.0 | 742944.0 cm-1 |
| 65576519 1D2.0 | 743013.0 cm-1 |
| 65576519 3G5.0 | 743601.0 cm-1 |
| 65576519 1F3.0 | 744810.0 cm-1 |
| 24555596 3F4.0 | 754280.0 cm-1 |
| 65576519 3F4.0 | 756640.0 cm-1 |
| 65576519 3P0.0 | 758950.0 cm-1 |
| 65576519 3F3.0 | 759168.0 cm-1 |
| 65576519 3P1.0 | 759687.0 cm-1 |
| 65576519 3F2.0 | 760418.0 cm-1 |
| 65576519 3P2.0 | 761754.0 cm-1 |
| 24555596 1D2.0 | 764155.0 cm-1 |
| 65576519 1G4.0 | 765132.0 cm-1 |
| 65576519 3S1.0 | 765307.0 cm-1 |
| 24555596 3F3.0 | 768515.0 cm-1 |
| 65576519 3G3.0 | 770564.0 cm-1 |
| 65576519 1P1.0 | 770651.0 cm-1 |
| 65576519 3G4.0 | 771301.0 cm-1 |
| 65576519 3G5.0 | 772214.0 cm-1 |
| 65576519 3D1.0 | 774213.0 cm-1 |
| 65576519 3D2.0 | 774622.0 cm-1 |
| 65576519 1D2.0 | 774865.0 cm-1 |
| 65576519 3D3.0 | 775562.0 cm-1 |
| 65576519 1F3.0 | 778038.0 cm-1 |
| 65576519 1D2.0 | 778351.0 cm-1 |
| 65576519 3F3.0 | 779310.0 cm-1 |
| 65576519 3F4.0 | 779536.0 cm-1 |
| 65576519 3F2.0 | 779581.0 cm-1 |
| 24555596 3F2.0 | 787423.0 cm-1 |
| 65576519 3P2.0 | 788482.0 cm-1 |
| 65576519 3P1.0 | 789523.0 cm-1 |
| 65576519 3P0.0 | 789877.0 cm-1 |
| 65576519 1G4.0 | 790650.0 cm-1 |
| 24555596 3P0.0 | 799796.0 cm-1 |
| 24555596 3P1.0 | 800157.0 cm-1 |
| 24555596 3P2.0 | 806957.0 cm-1 |
| 24555596 3D3.0 | 809123.0 cm-1 |
| 24555596 3D1.0 | 819572.0 cm-1 |
| 65576519 1S0.0 | 822131.0 cm-1 |
| 24555596 3D2.0 | 828284.0 cm-1 |
| 24555596 1P1.0 | 875737.0 cm-1 |
| 24555596 1F3.0 | 881191.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R % Parentage 1 65586 == 3P6 3D8 100 1 3F 3F/ 2 65586 == 3P6 3D8 100 1 3F 3F/ 3 65586 == 3P6 3D8 96 1 3F 3F/ 4 65586 == 3P6 3D8 64 4 1D 1D/ 5 65586 == 3P6 3D8 100 2 3P 3P/ 6 65586 == 3P6 3D8 67 2 3P 3P/ 7 65586 == 3P6 3D8 99 2 3P 3P/ 8 65586 == 3P6 3D8 99 3 1G 1G/ 9 65586 == 3P6 3D8 99 5 1S 1S/ 10 65576517 == 3P6 3D7 4S1 99 1 4F 4F/ 1 2S 5F/ 11 65576517 == 3P6 3D7 4S1 97 1 4F 4F/ 1 2S 5F/ 12 65576517 == 3P6 3D7 4S1 98 1 4F 4F/ 1 2S 5F/ 13 65576517 == 3P6 3D7 4S1 98 1 4F 4F/ 1 2S 5F/ 14 65576517 == 3P6 3D7 4S1 99 1 4F 4F/ 1 2S 5F/ 15 65576517 == 3P6 3D7 4S1 95 1 4F 4F/ 1 2S 3F/ 16 65576517 == 3P6 3D7 4S1 98 1 4F 4F/ 1 2S 3F/ 17 65576517 == 3P6 3D7 4S1 98 1 4F 4F/ 1 2S 3F/ 18 65576517 == 3P6 3D7 4S1 99 2 4P 4P/ 1 2S 5P/ 19 65576517 == 3P6 3D7 4S1 88 2 4P 4P/ 1 2S 5P/ 20 65576517 == 3P6 3D7 4S1 91 2 4P 4P/ 1 2S 5P/ 21 65576517 == 3P6 3D7 4S1 92 4 2G 2G/ 1 2S 3G/ 22 65576517 == 3P6 3D7 4S1 81 4 2G 2G/ 1 2S 3G/ 23 65576517 == 3P6 3D7 4S1 99 4 2G 2G/ 1 2S 3G/ 24 65576517 == 3P6 3D7 4S1 68 2 4P 4P/ 1 2S 3P/ 25 65576517 == 3P6 3D7 4S1 54 2 4P 4P/ 1 2S 3P/ 26 65576517 == 3P6 3D7 4S1 76 4 2G 2G/ 1 2S 1G/ 27 65576517 == 3P6 3D7 4S1 61 2 4P 4P/ 1 2S 3P/ 28 65576517 == 3P6 3D7 4S1 100 3 2H 2H/ 1 2S 3H/ 29 65576517 == 3P6 3D7 4S1 46 8 2P 2P/ 1 2S 3P/ 30 65576517 == 3P6 3D7 4S1 86 3 2H 2H/ 1 2S 3H/ 31 65576517 == 3P6 3D7 4S1 44 8 2P 2P/ 1 2S 3P/ 32 65576517 == 3P6 3D7 4S1 * 75 7 2D 2D/ 1 2S 3D/ 33 65576517 == 3P6 3D7 4S1 84 3 2H 2H/ 1 2S 3H/ 34 65576517 == 3P6 3D7 4S1 61 8 2P 2P/ 1 2S 3P/ 35 65576517 == 3P6 3D7 4S1 * 22 7 2D 2D/ 1 2S 3D/ 36 65576517 == 3P6 3D7 4S1 * 48 7 2D 2D/ 1 2S 3D/ 37 65576517 == 3P6 3D7 4S1 88 3 2H 2H/ 1 2S 1H/ 38 65576517 == 3P6 3D7 4S1 45 8 2P 2P/ 1 2S 1P/ 39 65576517 == 3P6 3D7 4S1 54 7 2D 2D/ 1 2S 1D/ 40 65576517 == 3P6 3D7 4S1 99 5 2F 2F/ 1 2S 3F/ 41 65576517 == 3P6 3D7 4S1 97 5 2F 2F/ 1 2S 3F/ 42 65576517 == 3P6 3D7 4S1 99 5 2F 2F/ 1 2S 3F/ 43 65576517 == 3P6 3D7 4S1 97 5 2F 2F/ 1 2S 1F/ 44 65576517 == 3P6 3D7 4S1 82 6 2D 2D/ 1 2S 3D/ 45 65576517 == 3P6 3D7 4S1 78 6 2D 2D/ 1 2S 3D/ 46 65576517 == 3P6 3D7 4S1 76 6 2D 2D/ 1 2S 3D/ 47 65576517 == 3P6 3D7 4S1 76 6 2D 2D/ 1 2S 1D/ 48 65576518 == 3P6 3D7 4P1 46 1 4F 4F/ 1 2P 5D/ 49 65576518 == 3P6 3D7 4P1 77 1 4F 4F/ 1 2P 5F/ 50 65576518 == 3P6 3D7 4P1 60 1 4F 4F/ 1 2P 5F/ 51 65576518 == 3P6 3D7 4P1 28 1 4F 4F/ 1 2P 5F/ 52 65576518 == 3P6 3D7 4P1 74 1 4F 4F/ 1 2P 5F/ 53 65576518 == 3P6 3D7 4P1 99 1 4F 4F/ 1 2P 5G/ 54 65576518 == 3P6 3D7 4P1 88 1 4F 4F/ 1 2P 5F/ 55 65576518 == 3P6 3D7 4P1 50 1 4F 4F/ 1 2P 5G/ 56 65576518 == 3P6 3D7 4P1 44 1 4F 4F/ 1 2P 5G/ 57 65576518 == 3P6 3D7 4P1 49 1 4F 4F/ 1 2P 5G/ 58 65576518 == 3P6 3D7 4P1 73 1 4F 4F/ 1 2P 5G/ 59 65576518 == 3P6 3D7 4P1 23 1 4F 4F/ 1 2P 5D/ 60 65576518 == 3P6 3D7 4P1 52 1 4F 4F/ 1 2P 5D/ 61 65576518 == 3P6 3D7 4P1 77 1 4F 4F/ 1 2P 5D/ 62 65576518 == 3P6 3D7 4P1 83 1 4F 4F/ 1 2P 5D/ 63 65576518 == 3P6 3D7 4P1 64 1 4F 4F/ 1 2P 3G/ 64 65576518 == 3P6 3D7 4P1 79 1 4F 4F/ 1 2P 3F/ 65 65576518 == 3P6 3D7 4P1 54 1 4F 4F/ 1 2P 3F/ 66 65576518 == 3P6 3D7 4P1 81 1 4F 4F/ 1 2P 3G/ 67 65576518 == 3P6 3D7 4P1 58 1 4F 4F/ 1 2P 3D/ 68 65576518 == 3P6 3D7 4P1 71 1 4F 4F/ 1 2P 3F/ 69 65576518 == 3P6 3D7 4P1 88 1 4F 4F/ 1 2P 3G/ 70 65576518 == 3P6 3D7 4P1 64 1 4F 4F/ 1 2P 3D/ 71 65576518 == 3P6 3D7 4P1 87 2 4P 4P/ 1 2P 5S/ 72 65576518 == 3P6 3D7 4P1 85 1 4F 4F/ 1 2P 3D/ 73 65576518 == 3P6 3D7 4P1 53 4 2G 2G/ 1 2P 3H/ 74 65576518 == 3P6 3D7 4P1 51 4 2G 2G/ 1 2P 3F/ 75 65576518 == 3P6 3D7 4P1 24 8 2P 2P/ 1 2P 3P/ 76 65576518 == 3P6 3D7 4P1 58 2 4P 4P/ 1 2P 5D/ 77 65576518 == 3P6 3D7 4P1 63 2 4P 4P/ 1 2P 5D/ 78 65576518 == 3P6 3D7 4P1 80 4 2G 2G/ 1 2P 3H/ 79 65576518 == 3P6 3D7 4P1 70 2 4P 4P/ 1 2P 5D/ 80 65576518 == 3P6 3D7 4P1 51 2 4P 4P/ 1 2P 5D/ 81 65576518 == 3P6 3D7 4P1 87 4 2G 2G/ 1 2P 3H/ 82 65576518 == 3P6 3D7 4P1 89 2 4P 4P/ 1 2P 5D/ 83 65576518 == 3P6 3D7 4P1 53 4 2G 2G/ 1 2P 3F/ 84 65576518 == 3P6 3D7 4P1 37 4 2G 2G/ 1 2P 1G/ 85 65576518 == 3P6 3D7 4P1 57 8 2P 2P/ 1 2P 3P/ 86 65576518 == 3P6 3D7 4P1 40 8 2P 2P/ 1 2P 3P/ 87 65576518 == 3P6 3D7 4P1 74 4 2G 2G/ 1 2P 3G/ 88 65576518 == 3P6 3D7 4P1 44 4 2G 2G/ 1 2P 1F/ 89 65576518 == 3P6 3D7 4P1 * 8 7 2D 2D/ 1 2P 3F/ 90 65576518 == 3P6 3D7 4P1 34 2 4P 4P/ 1 2P 5P/ 91 65576518 == 3P6 3D7 4P1 44 2 4P 4P/ 1 2P 5P/ 92 65576518 == 3P6 3D7 4P1 85 3 2H 2H/ 1 2P 3G/ 93 65576518 == 3P6 3D7 4P1 54 3 2H 2H/ 1 2P 3I/ 94 65576518 == 3P6 3D7 4P1 33 2 4P 4P/ 1 2P 5P/ 95 65576518 == 3P6 3D7 4P1 89 4 2G 2G/ 1 2P 3F/ 96 65576518 == 3P6 3D7 4P1 45 4 2G 2G/ 1 2P 1H/ 97 65576518 == 3P6 3D7 4P1 66 4 2G 2G/ 1 2P 3G/ 98 65576518 == 3P6 3D7 4P1 33 4 2G 2G/ 1 2P 3G/ 99 65576518 == 3P6 3D7 4P1 39 2 4P 4P/ 1 2P 3S/ 100 65576518 == 3P6 3D7 4P1 31 2 4P 4P/ 1 2P 3D/ 101 65576518 == 3P6 3D7 4P1 38 2 4P 4P/ 1 2P 3D/ 102 65576518 == 3P6 3D7 4P1 78 3 2H 2H/ 1 2P 3I/ 103 65576518 == 3P6 3D7 4P1 53 8 2P 2P/ 1 2P 1S/ 104 65576518 == 3P6 3D7 4P1 81 3 2H 2H/ 1 2P 3G/ 105 65576518 == 3P6 3D7 4P1 100 3 2H 2H/ 1 2P 3I/ 106 65576518 == 3P6 3D7 4P1 45 2 4P 4P/ 1 2P 3P/ 107 65576518 == 3P6 3D7 4P1 49 7 2D 2D/ 1 2P 3D/ 108 65576518 == 3P6 3D7 4P1 46 2 4P 4P/ 1 2P 3P/ 109 65576518 == 3P6 3D7 4P1 33 2 4P 4P/ 1 2P 3D/ 110 65576518 == 3P6 3D7 4P1 39 8 2P 2P/ 1 2P 3D/ 111 65576518 == 3P6 3D7 4P1 62 3 2H 2H/ 1 2P 3G/ 112 65576518 == 3P6 3D7 4P1 41 7 2D 2D/ 1 2P 3D/ 113 65576518 == 3P6 3D7 4P1 25 7 2D 2D/ 1 2P 3D/ 114 65576518 == 3P6 3D7 4P1 30 8 2P 2P/ 1 2P 3D/ 115 65576518 == 3P6 3D7 4P1 57 3 2H 2H/ 1 2P 1I/ 116 65576518 == 3P6 3D7 4P1 55 8 2P 2P/ 1 2P 3D/ 117 65576518 == 3P6 3D7 4P1 * 76 7 2D 2D/ 1 2P 3F/ 118 65576518 == 3P6 3D7 4P1 93 3 2H 2H/ 1 2P 3H/ 119 65576518 == 3P6 3D7 4P1 * 22 7 2D 2D/ 1 2P 3F/ 120 65576518 == 3P6 3D7 4P1 61 2 4P 4P/ 1 2P 3P/ 121 65576518 == 3P6 3D7 4P1 84 3 2H 2H/ 1 2P 3H/ 122 65576518 == 3P6 3D7 4P1 30 7 2D 2D/ 1 2P 1D/ 123 65576518 == 3P6 3D7 4P1 88 3 2H 2H/ 1 2P 3H/ 124 65576518 == 3P6 3D7 4P1 45 8 2P 2P/ 1 2P 3S/ 125 65576518 == 3P6 3D7 4P1 34 8 2P 2P/ 1 2P 1D/ 126 65576518 == 3P6 3D7 4P1 27 8 2P 2P/ 1 2P 1P/ 127 65576518 == 3P6 3D7 4P1 59 3 2H 2H/ 1 2P 1G/ 128 65576518 == 3P6 3D7 4P1 25 7 2D 2D/ 1 2P 3P/ 129 65576518 == 3P6 3D7 4P1 48 7 2D 2D/ 1 2P 1F/ 130 65576518 == 3P6 3D7 4P1 87 3 2H 2H/ 1 2P 1H/ 131 65576518 == 3P6 3D7 4P1 50 7 2D 2D/ 1 2P 1P/ 132 65576518 == 3P6 3D7 4P1 36 7 2D 2D/ 1 2P 3P/ 133 65576518 == 3P6 3D7 4P1 66 7 2D 2D/ 1 2P 3P/ 134 65576518 == 3P6 3D7 4P1 43 5 2F 2F/ 1 2P 1D/ 135 65576518 == 3P6 3D7 4P1 71 5 2F 2F/ 1 2P 3G/ 136 65576518 == 3P6 3D7 4P1 52 5 2F 2F/ 1 2P 3G/ 137 65576518 == 3P6 3D7 4P1 53 5 2F 2F/ 1 2P 3D/ 138 65576518 == 3P6 3D7 4P1 47 5 2F 2F/ 1 2P 3F/ 139 65576518 == 3P6 3D7 4P1 52 5 2F 2F/ 1 2P 3F/ 140 65576518 == 3P6 3D7 4P1 46 5 2F 2F/ 1 2P 1G/ 141 65576518 == 3P6 3D7 4P1 89 5 2F 2F/ 1 2P 3D/ 142 65576518 == 3P6 3D7 4P1 59 5 2F 2F/ 1 2P 3D/ 143 65576518 == 3P6 3D7 4P1 94 5 2F 2F/ 1 2P 3G/ 144 65576518 == 3P6 3D7 4P1 58 5 2F 2F/ 1 2P 3F/ 145 65576518 == 3P6 3D7 4P1 91 5 2F 2F/ 1 2P 1F/ 146 65576518 == 3P6 3D7 4P1 75 6 2D 2D/ 1 2P 3P/ 147 65576518 == 3P6 3D7 4P1 76 6 2D 2D/ 1 2P 3P/ 148 65576518 == 3P6 3D7 4P1 75 6 2D 2D/ 1 2P 3F/ 149 65576518 == 3P6 3D7 4P1 84 6 2D 2D/ 1 2P 3P/ 150 65576518 == 3P6 3D7 4P1 70 6 2D 2D/ 1 2P 3F/ 151 65576518 == 3P6 3D7 4P1 74 6 2D 2D/ 1 2P 3F/ 152 65576518 == 3P6 3D7 4P1 63 6 2D 2D/ 1 2P 1P/ 153 65576518 == 3P6 3D7 4P1 69 6 2D 2D/ 1 2P 1F/ 154 65576518 == 3P6 3D7 4P1 61 6 2D 2D/ 1 2P 3D/ 155 65576518 == 3P6 3D7 4P1 64 6 2D 2D/ 1 2P 3D/ 156 65576518 == 3P6 3D7 4P1 58 6 2D 2D/ 1 2P 1D/ 157 65576518 == 3P6 3D7 4P1 66 6 2D 2D/ 1 2P 3D/ 158 65576519 == 3P6 3D7 4D1 85 1 4F 4F/ 1 2D 5F/ 159 65576519 == 3P6 3D7 4D1 75 1 4F 4F/ 1 2D 5F/ 160 65576519 == 3P6 3D7 4D1 90 1 4F 4F/ 1 2D 5G/ 161 65576519 == 3P6 3D7 4D1 60 1 4F 4F/ 1 2D 5F/ 162 65576519 == 3P6 3D7 4D1 98 1 4F 4F/ 1 2D 5H/ 163 65576519 == 3P6 3D7 4D1 57 1 4F 4F/ 1 2D 5G/ 164 65576519 == 3P6 3D7 4D1 72 1 4F 4F/ 1 2D 5P/ 165 65576519 == 3P6 3D7 4D1 80 1 4F 4F/ 1 2D 5F/ 166 65576519 == 3P6 3D7 4D1 55 1 4F 4F/ 1 2D 5H/ 167 65576519 == 3P6 3D7 4D1 93 1 4F 4F/ 1 2D 5F/ 168 65576519 == 3P6 3D7 4D1 62 1 4F 4F/ 1 2D 5G/ 169 65576519 == 3P6 3D7 4D1 66 1 4F 4F/ 1 2D 5D/ 170 65576519 == 3P6 3D7 4D1 69 1 4F 4F/ 1 2D 3G/ 171 65576519 == 3P6 3D7 4D1 70 1 4F 4F/ 1 2D 5P/ 172 65576519 == 3P6 3D7 4D1 62 1 4F 4F/ 1 2D 5G/ 173 65576519 == 3P6 3D7 4D1 75 1 4F 4F/ 1 2D 5H/ 174 65576519 == 3P6 3D7 4D1 56 1 4F 4F/ 1 2D 3D/ 175 65576519 == 3P6 3D7 4D1 61 1 4F 4F/ 1 2D 3H/ 176 65576519 == 3P6 3D7 4D1 90 1 4F 4F/ 1 2D 5G/ 177 65576519 == 3P6 3D7 4D1 80 1 4F 4F/ 1 2D 5H/ 178 65576519 == 3P6 3D7 4D1 65 1 4F 4F/ 1 2D 5P/ 179 65576519 == 3P6 3D7 4D1 78 1 4F 4F/ 1 2D 3G/ 180 65576519 == 3P6 3D7 4D1 66 1 4F 4F/ 1 2D 5D/ 181 65576519 == 3P6 3D7 4D1 65 1 4F 4F/ 1 2D 3D/ 182 65576519 == 3P6 3D7 4D1 91 1 4F 4F/ 1 2D 5H/ 183 65576519 == 3P6 3D7 4D1 96 1 4F 4F/ 1 2D 5D/ 184 65576519 == 3P6 3D7 4D1 56 1 4F 4F/ 1 2D 5D/ 185 65576519 == 3P6 3D7 4D1 57 1 4F 4F/ 1 2D 5D/ 186 65576519 == 3P6 3D7 4D1 80 1 4F 4F/ 1 2D 3H/ 187 65576519 == 3P6 3D7 4D1 90 1 4F 4F/ 1 2D 3G/ 188 65576519 == 3P6 3D7 4D1 89 1 4F 4F/ 1 2D 3D/ 189 65576519 == 3P6 3D7 4D1 85 1 4F 4F/ 1 2D 3H/ 190 65576519 == 3P6 3D7 4D1 57 1 4F 4F/ 1 2D 3F/ 191 65576519 == 3P6 3D7 4D1 58 1 4F 4F/ 1 2D 3F/ 192 65576519 == 3P6 3D7 4D1 63 1 4F 4F/ 1 2D 3P/ 193 65576519 == 3P6 3D7 4D1 52 1 4F 4F/ 1 2D 3F/ 194 65576519 == 3P6 3D7 4D1 78 1 4F 4F/ 1 2D 3P/ 195 65576519 == 3P6 3D7 4D1 80 1 4F 4F/ 1 2D 3P/ 196 65576519 == 3P6 3D7 4D1 97 2 4P 4P/ 1 2D 5P/ 197 65576519 == 3P6 3D7 4D1 93 2 4P 4P/ 1 2D 5P/ 198 65576519 == 3P6 3D7 4D1 87 2 4P 4P/ 1 2D 5P/ 199 65576519 == 3P6 3D7 4D1 62 4 2G 2G/ 1 2D 3D/ 200 65576519 == 3P6 3D7 4D1 86 2 4P 4P/ 1 2D 5F/ 201 65576519 == 3P6 3D7 4D1 96 2 4P 4P/ 1 2D 5F/ 202 65576519 == 3P6 3D7 4D1 78 2 4P 4P/ 1 2D 5F/ 203 65576519 == 3P6 3D7 4D1 71 2 4P 4P/ 1 2D 5F/ 204 65576519 == 3P6 3D7 4D1 62 4 2G 2G/ 1 2D 3I/ 205 65576519 == 3P6 3D7 4D1 88 4 2G 2G/ 1 2D 3I/ 206 65576519 == 3P6 3D7 4D1 62 2 4P 4P/ 1 2D 5F/ 207 65576519 == 3P6 3D7 4D1 59 4 2G 2G/ 1 2D 3D/ 208 65576519 == 3P6 3D7 4D1 50 4 2G 2G/ 1 2D 1F/ 209 65576519 == 3P6 3D7 4D1 27 4 2G 2G/ 1 2D 3H/ 210 65576519 == 3P6 3D7 4D1 49 4 2G 2G/ 1 2D 3G/ 211 65576519 == 3P6 3D7 4D1 72 4 2G 2G/ 1 2D 3H/ 212 65576519 == 3P6 3D7 4D1 72 4 2G 2G/ 1 2D 3G/ 213 65576519 == 3P6 3D7 4D1 46 4 2G 2G/ 1 2D 3D/ 214 65576519 == 3P6 3D7 4D1 75 2 4P 4P/ 1 2D 3F/ 215 65576519 == 3P6 3D7 4D1 40 8 2P 2P/ 1 2D 3P/ 216 65576519 == 3P6 3D7 4D1 43 2 4P 4P/ 1 2D 3F/ 217 65576519 == 3P6 3D7 4D1 54 4 2G 2G/ 1 2D 3I/ 218 65576519 == 3P6 3D7 4D1 33 2 4P 4P/ 1 2D 5D/ 219 65576519 == 3P6 3D7 4D1 76 4 2G 2G/ 1 2D 3G/ 220 65576519 == 3P6 3D7 4D1 45 2 4P 4P/ 1 2D 3F/ 221 65576519 == 3P6 3D7 4D1 * 18 2 4P 4P/ 1 2D 3P/ 222 65576519 == 3P6 3D7 4D1 76 2 4P 4P/ 1 2D 5D/ 223 65576519 == 3P6 3D7 4D1 50 4 2G 2G/ 1 2D 1I/ 224 65576519 == 3P6 3D7 4D1 88 4 2G 2G/ 1 2D 3H/ 225 65576519 == 3P6 3D7 4D1 63 2 4P 4P/ 1 2D 5D/ 226 65576519 == 3P6 3D7 4D1 51 4 2G 2G/ 1 2D 1H/ 227 65576519 == 3P6 3D7 4D1 1 8 2P 2P/ 1 2D 3P/ 228 65576519 == 3P6 3D7 4D1 31 4 2G 2G/ 1 2D 3F/ 229 65576519 == 3P6 3D7 4D1 46 2 4P 4P/ 1 2D 5D/ 230 65576519 == 3P6 3D7 4D1 17 4 2G 2G/ 1 2D 3F/ 231 65576519 == 3P6 3D7 4D1 * 16 2 4P 4P/ 1 2D 3P/ 232 65576519 == 3P6 3D7 4D1 27 4 2G 2G/ 1 2D 1D/ 233 65576519 == 3P6 3D7 4D1 43 4 2G 2G/ 1 2D 1G/ 234 65576519 == 3P6 3D7 4D1 42 2 4P 4P/ 1 2D 5D/ 235 65576519 == 3P6 3D7 4D1 58 3 2H 2H/ 1 2D 3K/ 236 65576519 == 3P6 3D7 4D1 100 3 2H 2H/ 1 2D 3K/ 237 65576519 == 3P6 3D7 4D1 27 2 4P 4P/ 1 2D 3D/ 238 65576519 == 3P6 3D7 4D1 39 2 4P 4P/ 1 2D 3D/ 239 65576519 == 3P6 3D7 4D1 22 8 2P 2P/ 1 2D 3D/ 240 65576519 == 3P6 3D7 4D1 94 3 2H 2H/ 1 2D 3G/ 241 65576519 == 3P6 3D7 4D1 28 8 2P 2P/ 1 2D 3D/ 242 65576519 == 3P6 3D7 4D1 27 8 2P 2P/ 1 2D 3F/ 243 65576519 == 3P6 3D7 4D1 29 4 2G 2G/ 1 2D 3F/ 244 65576519 == 3P6 3D7 4D1 7 8 2P 2P/ 1 2D 3F/ 245 65576519 == 3P6 3D7 4D1 35 7 2D 2D/ 1 2D 3P/ 246 65576519 == 3P6 3D7 4D1 53 3 2H 2H/ 1 2D 1F/ 247 65576519 == 3P6 3D7 4D1 1 8 2P 2P/ 1 2D 3D/ 248 65576519 == 3P6 3D7 4D1 87 3 2H 2H/ 1 2D 3K/ 249 65576519 == 3P6 3D7 4D1 29 2 4P 4P/ 1 2D 3D/ 250 65576519 == 3P6 3D7 4D1 54 3 2H 2H/ 1 2D 3G/ 251 65576519 == 3P6 3D7 4D1 54 3 2H 2H/ 1 2D 1K/ 252 65576519 == 3P6 3D7 4D1 39 8 2P 2P/ 1 2D 3F/ 253 65576519 == 3P6 3D7 4D1 99 3 2H 2H/ 1 2D 3I/ 254 65576519 == 3P6 3D7 4D1 49 3 2H 2H/ 1 2D 3G/ 255 65576519 == 3P6 3D7 4D1 41 7 2D 2D/ 1 2D 3D/ 256 65576519 == 3P6 3D7 4D1 63 3 2H 2H/ 1 2D 3I/ 257 65576519 == 3P6 3D7 4D1 24 8 2P 2P/ 1 2D 3P/ 258 65576519 == 3P6 3D7 4D1 52 3 2H 2H/ 1 2D 1H/ 259 65576519 == 3P6 3D7 4D1 36 7 2D 2D/ 1 2D 3G/ 260 65576519 == 3P6 3D7 4D1 17 7 2D 2D/ 1 2D 3F/ 261 65576519 == 3P6 3D7 4D1 74 7 2D 2D/ 1 2D 3G/ 262 65576519 == 3P6 3D7 4D1 28 8 2P 2P/ 1 2D 1P/ 263 65576519 == 3P6 3D7 4D1 70 3 2H 2H/ 1 2D 3H/ 264 65576519 == 3P6 3D7 4D1 11 7 2D 2D/ 1 2D 3D/ 265 65576519 == 3P6 3D7 4D1 41 7 2D 2D/ 1 2D 1G/ 266 65576519 == 3P6 3D7 4D1 29 8 2P 2P/ 1 2D 1F/ 267 65576519 == 3P6 3D7 4D1 37 7 2D 2D/ 1 2D 3S/ 268 65576519 == 3P6 3D7 4D1 77 3 2H 2H/ 1 2D 3I/ 269 65576519 == 3P6 3D7 4D1 37 7 2D 2D/ 1 2D 3F/ 270 65576519 == 3P6 3D7 4D1 87 3 2H 2H/ 1 2D 3H/ 271 65576519 == 3P6 3D7 4D1 57 3 2H 2H/ 1 2D 3H/ 272 65576519 == 3P6 3D7 4D1 32 7 2D 2D/ 1 2D 1F/ 273 65576519 == 3P6 3D7 4D1 * 18 7 2D 2D/ 1 2D 1P/ 274 65576519 == 3P6 3D7 4D1 82 3 2H 2H/ 1 2D 1I/ 275 65576519 == 3P6 3D7 4D1 35 7 2D 2D/ 1 2D 3D/ 276 65576519 == 3P6 3D7 4D1 22 8 2P 2P/ 1 2D 1D/ 277 65576519 == 3P6 3D7 4D1 37 7 2D 2D/ 1 2D 3G/ 278 65576519 == 3P6 3D7 4D1 7 7 2D 2D/ 1 2D 3F/ 279 65576519 == 3P6 3D7 4D1 30 7 2D 2D/ 1 2D 3P/ 280 65576519 == 3P6 3D7 4D1 58 7 2D 2D/ 1 2D 1S/ 281 65576519 == 3P6 3D7 4D1 30 7 2D 2D/ 1 2D 3P/ 282 65576519 == 3P6 3D7 4D1 * 1 2 4P 4P/ 1 2D 3P/ 283 65576519 == 3P6 3D7 4D1 38 5 2F 2F/ 1 2D 1G/ 284 65576519 == 3P6 3D7 4D1 79 5 2F 2F/ 1 2D 1P/ 285 65576519 == 3P6 3D7 4D1 90 5 2F 2F/ 1 2D 3H/ 286 65576519 == 3P6 3D7 4D1 62 5 2F 2F/ 1 2D 3F/ 287 65576519 == 3P6 3D7 4D1 91 5 2F 2F/ 1 2D 3H/ 288 65576519 == 3P6 3D7 4D1 42 5 2F 2F/ 1 2D 3F/ 289 65576519 == 3P6 3D7 4D1 47 5 2F 2F/ 1 2D 3D/ 290 65576519 == 3P6 3D7 4D1 89 5 2F 2F/ 1 2D 3D/ 291 65576519 == 3P6 3D7 4D1 85 5 2F 2F/ 1 2D 3D/ 292 65576519 == 3P6 3D7 4D1 97 5 2F 2F/ 1 2D 3H/ 293 65576519 == 3P6 3D7 4D1 * 18 5 2F 2F/ 1 2D 3G/ 294 65576519 == 3P6 3D7 4D1 * 53 5 2F 2F/ 1 2D 3G/ 295 65576519 == 3P6 3D7 4D1 91 5 2F 2F/ 1 2D 1H/ 296 65576519 == 3P6 3D7 4D1 43 5 2F 2F/ 1 2D 3F/ 297 65576519 == 3P6 3D7 4D1 47 5 2F 2F/ 1 2D 1D/ 298 65576519 == 3P6 3D7 4D1 * 92 5 2F 2F/ 1 2D 3G/ 299 65576519 == 3P6 3D7 4D1 84 5 2F 2F/ 1 2D 1F/ 300 24555596 == 3S2 3P5 3D9 100 1 2P 2P/ 1 2D 3F/ 301 65576519 == 3P6 3D7 4D1 23 3 2H 2H/ 1 2D 3F/ 302 65576519 == 3P6 3D7 4D1 45 5 2F 2F/ 1 2D 3P/ 303 65576519 == 3P6 3D7 4D1 22 3 2H 2H/ 1 2D 3F/ 304 65576519 == 3P6 3D7 4D1 46 5 2F 2F/ 1 2D 3P/ 305 65576519 == 3P6 3D7 4D1 21 3 2H 2H/ 1 2D 3F/ 306 65576519 == 3P6 3D7 4D1 53 5 2F 2F/ 1 2D 3P/ 307 24555596 == 3S2 3P5 3D9 70 1 2P 2P/ 1 2D 1D/ 308 65576519 == 3P6 3D7 4D1 * 15 3 2H 2H/ 1 2D 1G/ 309 65576519 == 3P6 3D7 4D1 78 6 2D 2D/ 1 2D 3S/ 310 24555596 == 3S2 3P5 3D9 95 1 2P 2P/ 1 2D 3F/ 311 65576519 == 3P6 3D7 4D1 79 6 2D 2D/ 1 2D 3G/ 312 65576519 == 3P6 3D7 4D1 75 6 2D 2D/ 1 2D 1P/ 313 65576519 == 3P6 3D7 4D1 78 6 2D 2D/ 1 2D 3G/ 314 65576519 == 3P6 3D7 4D1 75 6 2D 2D/ 1 2D 3G/ 315 65576519 == 3P6 3D7 4D1 75 6 2D 2D/ 1 2D 3D/ 316 65576519 == 3P6 3D7 4D1 68 6 2D 2D/ 1 2D 3D/ 317 65576519 == 3P6 3D7 4D1 29 7 2D 2D/ 1 2D 1D/ 318 65576519 == 3P6 3D7 4D1 68 6 2D 2D/ 1 2D 3D/ 319 65576519 == 3P6 3D7 4D1 62 6 2D 2D/ 1 2D 1F/ 320 65576519 == 3P6 3D7 4D1 71 6 2D 2D/ 1 2D 1D/ 321 65576519 == 3P6 3D7 4D1 70 6 2D 2D/ 1 2D 3F/ 322 65576519 == 3P6 3D7 4D1 77 6 2D 2D/ 1 2D 3F/ 323 65576519 == 3P6 3D7 4D1 65 6 2D 2D/ 1 2D 3F/ 324 24555596 == 3S2 3P5 3D9 60 1 2P 2P/ 1 2D 3F/ 325 65576519 == 3P6 3D7 4D1 44 6 2D 2D/ 1 2D 3P/ 326 65576519 == 3P6 3D7 4D1 44 6 2D 2D/ 1 2D 3P/ 327 65576519 == 3P6 3D7 4D1 43 6 2D 2D/ 1 2D 3P/ 328 65576519 == 3P6 3D7 4D1 41 6 2D 2D/ 1 2D 1G/ 329 24555596 == 3S2 3P5 3D9 100 1 2P 2P/ 1 2D 3P/ 330 24555596 == 3S2 3P5 3D9 88 1 2P 2P/ 1 2D 3P/ 331 24555596 == 3S2 3P5 3D9 44 1 2P 2P/ 1 2D 3P/ 332 24555596 == 3S2 3P5 3D9 93 1 2P 2P/ 1 2D 3D/ 333 24555596 == 3S2 3P5 3D9 81 1 2P 2P/ 1 2D 3D/ 334 65576519 == 3P6 3D7 4D1 96 6 2D 2D/ 1 2D 1S/ 335 24555596 == 3S2 3P5 3D9 55 1 2P 2P/ 1 2D 3D/ 336 24555596 == 3S2 3P5 3D9 89 1 2P 2P/ 1 2D 1P/ 337 24555596 == 3S2 3P5 3D9 97 1 2P 2P/ 1 2D 1F/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#ge32-06_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level IC YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 75 95 75 75 75 Parity 1 Parity 2 Allowed 15329 5233 12292 initially 15329 5233 12292 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 27/02/06 --------------------------------------------------------------------------------