ls#ge7.dat
Resolved Specific Ion Data Collections
- Ion
- Ge7+
- Temperature Range
- 1.103 eV → 1.215 x 104 eV
ADF04
- Filename
- ls#ge7.dat
- Full Path
- adf04/copmm#32/ls#ge7.dat
Download data
- Spontaneous Emission: Ge+7(i) → Ge+7(j) + hv
- Electron Impact Excitation: Ge+7(i) + e → Ge+7(j) + e
| 65576 4F13.5 | 0.0 cm-1 |
| 65576 4P5.5 | 22127.6 cm-1 |
| 65576 2G8.5 | 23534.5 cm-1 |
| 65576 2P2.5 | 31272.0 cm-1 |
| 65576 2H10.5 | 31893.6 cm-1 |
| 65576 2D4.5 | 35612.3 cm-1 |
| 65576 2F6.5 | 54214.0 cm-1 |
| 65576 2D4.5 | 85512.0 cm-1 |
| 65566517 6D14.5 | 493593.0 cm-1 |
| 65566517 4D9.5 | 505293.0 cm-1 |
| 65566517 4H21.5 | 526053.0 cm-1 |
| 65566517 4P5.5 | 529923.0 cm-1 |
| 65566517 4F13.5 | 530463.0 cm-1 |
| 65566517 2H10.5 | 532753.0 cm-1 |
| 65566517 4G17.5 | 536013.0 cm-1 |
| 65566517 2F6.5 | 537543.0 cm-1 |
| 65566517 2P2.5 | 538313.0 cm-1 |
| 65566517 2G8.5 | 542693.0 cm-1 |
| 65566517 2I12.5 | 544913.0 cm-1 |
| 65566517 4D9.5 | 545623.0 cm-1 |
| 65566517 2G8.5 | 548743.0 cm-1 |
| 65566517 2D4.5 | 552553.0 cm-1 |
| 65566517 2S0.5 | 556743.0 cm-1 |
| 65566517 2D4.5 | 559803.0 cm-1 |
| 65566517 2F6.5 | 567613.0 cm-1 |
| 65566517 4F13.5 | 578723.0 cm-1 |
| 65566517 4P5.5 | 579333.0 cm-1 |
| 65566517 2F6.5 | 585633.0 cm-1 |
| 65566517 2P2.5 | 586773.0 cm-1 |
| 65566517 2G8.5 | 592003.0 cm-1 |
| 65566518 6D14.5 | 612263.0 cm-1 |
| 65566518 6F20.5 | 620533.0 cm-1 |
| 65566517 2D4.5 | 624093.0 cm-1 |
| 65566518 6P8.5 | 625453.0 cm-1 |
| 65566518 4D9.5 | 628013.0 cm-1 |
| 65566518 4F13.5 | 629603.0 cm-1 |
| 65566518 4P5.5 | 634103.0 cm-1 |
| 65566518 4S1.5 | 647843.0 cm-1 |
| 65566518 4I25.5 | 648623.0 cm-1 |
| 65566518 4G17.5 | 649763.0 cm-1 |
| 65566518 4H21.5 | 651193.0 cm-1 |
| 65566518 4F13.5 | 652813.0 cm-1 |
| 65566518 2G8.5 | 653203.0 cm-1 |
| 65566518 2D4.5 | 654103.0 cm-1 |
| 65566518 2I12.5 | 654963.0 cm-1 |
| 65566518 4P5.5 | 656363.0 cm-1 |
| 65566518 4G17.5 | 656543.0 cm-1 |
| 65566518 4D9.5 | 656783.0 cm-1 |
| 65566518 4D9.5 | 657173.0 cm-1 |
| 65566518 2H10.5 | 658483.0 cm-1 |
| 65566518 2F6.5 | 659103.0 cm-1 |
| 65566518 4F13.5 | 659173.0 cm-1 |
| 65566517 2S0.5 | 661313.0 cm-1 |
| 65566518 2S0.5 | 661823.0 cm-1 |
| 65566518 4G17.5 | 662153.0 cm-1 |
| 65566518 4H21.5 | 662153.0 cm-1 |
| 65566518 2G8.5 | 662913.0 cm-1 |
| 65566518 2P2.5 | 664993.0 cm-1 |
| 65566518 2D4.5 | 666823.0 cm-1 |
| 65566518 2J14.5 | 666973.0 cm-1 |
| 65566518 2H10.5 | 667373.0 cm-1 |
| 65566518 2F6.5 | 667873.0 cm-1 |
| 65566518 4P5.5 | 670323.0 cm-1 |
| 65566518 2G8.5 | 670623.0 cm-1 |
| 65566518 2H10.5 | 671453.0 cm-1 |
| 65566518 2H10.5 | 673153.0 cm-1 |
| 65566518 2G8.5 | 673993.0 cm-1 |
| 65566518 4F13.5 | 674413.0 cm-1 |
| 65566518 4D9.5 | 674453.0 cm-1 |
| 65566518 2F6.5 | 674463.0 cm-1 |
| 65566518 2I12.5 | 674653.0 cm-1 |
| 65566518 2P2.5 | 675783.0 cm-1 |
| 65566518 2D4.5 | 678583.0 cm-1 |
| 65566518 2F6.5 | 679923.0 cm-1 |
| 65566518 2P2.5 | 682133.0 cm-1 |
| 65566518 2F6.5 | 685263.0 cm-1 |
| 65566518 2P2.5 | 685883.0 cm-1 |
| 65566518 2D4.5 | 689503.0 cm-1 |
| 65566518 2D4.5 | 689523.0 cm-1 |
| 65566518 2G8.5 | 690533.0 cm-1 |
| 65566518 4D9.5 | 696033.0 cm-1 |
| 65566518 2F6.5 | 697843.0 cm-1 |
| 65566518 2S0.5 | 700453.0 cm-1 |
| 65566518 4G17.5 | 702613.0 cm-1 |
| 65566518 4S1.5 | 704073.0 cm-1 |
| 65566518 2D4.5 | 707143.0 cm-1 |
| 65566518 2G8.5 | 708383.0 cm-1 |
| 65566518 4P5.5 | 709703.0 cm-1 |
| 65566518 4D9.5 | 710513.0 cm-1 |
| 65566518 4F13.5 | 711013.0 cm-1 |
| 65566518 2D4.5 | 715033.0 cm-1 |
| 65566518 2F6.5 | 715523.0 cm-1 |
| 65566518 2H10.5 | 717023.0 cm-1 |
| 65566518 2P2.5 | 717703.0 cm-1 |
| 65566518 2G8.5 | 719743.0 cm-1 |
| 65566518 2F6.5 | 721853.0 cm-1 |
| 24555586 4G17.5 | 732683.0 cm-1 |
| 65566518 2D4.5 | 744593.0 cm-1 |
| 65566518 2F6.5 | 753933.0 cm-1 |
| 65566518 2P2.5 | 754323.0 cm-1 |
| 24555586 2D4.5 | 755543.0 cm-1 |
| 24555586 2S0.5 | 769663.0 cm-1 |
| 24555586 2F6.5 | 769863.0 cm-1 |
| 24555586 4D9.5 | 775153.0 cm-1 |
| 24555586 4F13.5 | 781383.0 cm-1 |
| 24555586 4P5.5 | 787743.0 cm-1 |
| 65566518 2P2.5 | 790243.0 cm-1 |
| 24555586 2G8.5 | 791963.0 cm-1 |
| 65566519 6F20.5 | 803413.0 cm-1 |
| 65566519 6D14.5 | 807383.0 cm-1 |
| 65566519 6G26.5 | 809963.0 cm-1 |
| 65566519 6P8.5 | 810183.0 cm-1 |
| 24555586 2H10.5 | 810373.0 cm-1 |
| 65566519 4D9.5 | 813033.0 cm-1 |
| 24555586 4D9.5 | 813593.0 cm-1 |
| 65566519 4F13.5 | 815183.0 cm-1 |
| 65566519 4G17.5 | 815333.0 cm-1 |
| 65566519 4S1.5 | 817573.0 cm-1 |
| 65566519 6S2.5 | 818343.0 cm-1 |
| 24555586 2P2.5 | 820243.0 cm-1 |
| 65566519 4P5.5 | 825393.0 cm-1 |
| 65566519 2F6.5 | 836763.0 cm-1 |
| 65566519 4J29.5 | 837853.0 cm-1 |
| 24555586 4S1.5 | 838213.0 cm-1 |
| 65566519 4G17.5 | 838513.0 cm-1 |
| 65566519 4H21.5 | 838773.0 cm-1 |
| 65566519 4P5.5 | 839333.0 cm-1 |
| 65566519 4I25.5 | 839593.0 cm-1 |
| 65566519 2J14.5 | 840763.0 cm-1 |
| 65566519 4G17.5 | 842063.0 cm-1 |
| 65566519 4D9.5 | 843023.0 cm-1 |
| 65566519 2I12.5 | 843563.0 cm-1 |
| 65566519 4D9.5 | 843593.0 cm-1 |
| 65566519 2G8.5 | 843793.0 cm-1 |
| 65566519 4H21.5 | 844563.0 cm-1 |
| 65566519 2D4.5 | 845483.0 cm-1 |
| 65566519 2F6.5 | 846143.0 cm-1 |
| 65566519 2F6.5 | 846503.0 cm-1 |
| 65566519 2G8.5 | 846773.0 cm-1 |
| 65566519 4P5.5 | 846833.0 cm-1 |
| 24555586 2F6.5 | 846903.0 cm-1 |
| 65566519 2H10.5 | 847083.0 cm-1 |
| 65566519 2H10.5 | 847413.0 cm-1 |
| 65566519 4H21.5 | 848993.0 cm-1 |
| 65566519 4I25.5 | 849923.0 cm-1 |
| 65566519 4G17.5 | 850373.0 cm-1 |
| 65566519 4D9.5 | 850693.0 cm-1 |
| 65566519 4F13.5 | 851733.0 cm-1 |
| 65566519 2H10.5 | 852503.0 cm-1 |
| 65566519 2G8.5 | 853053.0 cm-1 |
| 65566519 2D4.5 | 853393.0 cm-1 |
| 65566519 2I12.5 | 853563.0 cm-1 |
| 65566519 4F13.5 | 853593.0 cm-1 |
| 65566519 2K16.5 | 854773.0 cm-1 |
| 65566519 2D4.5 | 855663.0 cm-1 |
| 65566519 2P2.5 | 856323.0 cm-1 |
| 24555586 2P2.5 | 856473.0 cm-1 |
| 65566519 4F13.5 | 856633.0 cm-1 |
| 65566519 4F13.5 | 857593.0 cm-1 |
| 65566519 2F6.5 | 857893.0 cm-1 |
| 65566519 4S1.5 | 858183.0 cm-1 |
| 65566519 2J14.5 | 858443.0 cm-1 |
| 65566519 2G8.5 | 858553.0 cm-1 |
| 65566519 2D4.5 | 859073.0 cm-1 |
| 65566519 2I12.5 | 859433.0 cm-1 |
| 65566519 4F13.5 | 859503.0 cm-1 |
| 65566519 2P2.5 | 859733.0 cm-1 |
| 65566519 2H10.5 | 859913.0 cm-1 |
| 24555586 2D4.5 | 860143.0 cm-1 |
| 65566519 4G17.5 | 860763.0 cm-1 |
| 65566519 4D9.5 | 861063.0 cm-1 |
| 65566519 2F6.5 | 861653.0 cm-1 |
| 65566519 2I12.5 | 862113.0 cm-1 |
| 65566519 2G8.5 | 863323.0 cm-1 |
| 65566519 2D4.5 | 864093.0 cm-1 |
| 65566519 2S0.5 | 864423.0 cm-1 |
| 65566519 2S0.5 | 870613.0 cm-1 |
| 65566519 2G8.5 | 870653.0 cm-1 |
| 65566519 2D4.5 | 870653.0 cm-1 |
| 65566519 2F6.5 | 871993.0 cm-1 |
| 65566519 4P5.5 | 874213.0 cm-1 |
| 65566519 2H10.5 | 875003.0 cm-1 |
| 65566519 2P2.5 | 876913.0 cm-1 |
| 65566519 2D4.5 | 877253.0 cm-1 |
| 65566519 2F6.5 | 881553.0 cm-1 |
| 24555586 2F6.5 | 883893.0 cm-1 |
| 65566519 2G8.5 | 884203.0 cm-1 |
| 65566519 2H10.5 | 886993.0 cm-1 |
| 65566519 4D9.5 | 888363.0 cm-1 |
| 65566519 2P2.5 | 889523.0 cm-1 |
| 65566519 4H21.5 | 890913.0 cm-1 |
| 65566519 4F13.5 | 890943.0 cm-1 |
| 65566519 2F6.5 | 891153.0 cm-1 |
| 65566519 2P2.5 | 892163.0 cm-1 |
| 65566519 4P5.5 | 892303.0 cm-1 |
| 65566519 4G17.5 | 895813.0 cm-1 |
| 65566519 2P2.5 | 896233.0 cm-1 |
| 65566519 4D9.5 | 898623.0 cm-1 |
| 65566519 2D4.5 | 899783.0 cm-1 |
| 65566519 2G8.5 | 899823.0 cm-1 |
| 65566519 2D4.5 | 900503.0 cm-1 |
| 65566519 2H10.5 | 902203.0 cm-1 |
| 65566519 2F6.5 | 902403.0 cm-1 |
| 65566519 2F6.5 | 902683.0 cm-1 |
| 65566519 4F13.5 | 903823.0 cm-1 |
| 65566519 2I12.5 | 904363.0 cm-1 |
| 65566519 2G8.5 | 904583.0 cm-1 |
| 24555586 2G8.5 | 905313.0 cm-1 |
| 65566519 2G8.5 | 909433.0 cm-1 |
| 65566519 2F6.5 | 910233.0 cm-1 |
| 65566519 2D4.5 | 910743.0 cm-1 |
| 65566519 2P2.5 | 912903.0 cm-1 |
| 65566519 2D4.5 | 916423.0 cm-1 |
| 24555586 2D4.5 | 917743.0 cm-1 |
| 65566519 4P5.5 | 919103.0 cm-1 |
| 65566519 2H10.5 | 921583.0 cm-1 |
| 24555586 2P2.5 | 932633.0 cm-1 |
| 65566519 2G8.5 | 940883.0 cm-1 |
| 65566519 2P2.5 | 942223.0 cm-1 |
| 65566519 2F6.5 | 944823.0 cm-1 |
| 65566519 2S0.5 | 945793.0 cm-1 |
| 65566519 2D4.5 | 960183.0 cm-1 |
| 65566519 2D4.5 | 980793.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 65576 == 3P6 3D7 1 4F 4F/ 2 65576 == 3P6 3D7 2 4P 4P/ 3 65576 == 3P6 3D7 4 2G 2G/ 4 65576 == 3P6 3D7 8 2P 2P/ 5 65576 == 3P6 3D7 3 2H 2H/ 6 65576 == 3P6 3D7 7 2D 2D/ 7 65576 == 3P6 3D7 5 2F 2F/ 8 65576 == 3P6 3D7 6 2D 2D/ 9 65566517 == 3P6 3D6 4S1 1 5D 5D/ 1 2S 6D/ 10 65566517 == 3P6 3D6 4S1 1 5D 5D/ 1 2S 4D/ 11 65566517 == 3P6 3D6 4S1 2 3H 3H/ 1 2S 4H/ 12 65566517 == 3P6 3D6 4S1 8 3P 3P/ 1 2S 4P/ 13 65566517 == 3P6 3D6 4S1 5 3F 3F/ 1 2S 4F/ 14 65566517 == 3P6 3D6 4S1 2 3H 3H/ 1 2S 2H/ 15 65566517 == 3P6 3D6 4S1 3 3G 3G/ 1 2S 4G/ 16 65566517 == 3P6 3D6 4S1 5 3F 3F/ 1 2S 2F/ 17 65566517 == 3P6 3D6 4S1 8 3P 3P/ 1 2S 2P/ 18 65566517 == 3P6 3D6 4S1 3 3G 3G/ 1 2S 2G/ 19 65566517 == 3P6 3D6 4S1 9 1I 1I/ 1 2S 2I/ 20 65566517 == 3P6 3D6 4S1 6 3D 3D/ 1 2S 4D/ 21 65566517 == 3P6 3D6 4S1 11 1G 1G/ 1 2S 2G/ 22 65566517 == 3P6 3D6 4S1 6 3D 3D/ 1 2S 2D/ 23 65566517 == 3P6 3D6 4S1 16 1S 1S/ 1 2S 2S/ 24 65566517 == 3P6 3D6 4S1 14 1D 1D/ 1 2S 2D/ 25 65566517 == 3P6 3D6 4S1 12 1F 1F/ 1 2S 2F/ 26 65566517 == 3P6 3D6 4S1 4 3F 3F/ 1 2S 4F/ 27 65566517 == 3P6 3D6 4S1 7 3P 3P/ 1 2S 4P/ 28 65566517 == 3P6 3D6 4S1 4 3F 3F/ 1 2S 2F/ 29 65566517 == 3P6 3D6 4S1 7 3P 3P/ 1 2S 2P/ 30 65566517 == 3P6 3D6 4S1 10 1G 1G/ 1 2S 2G/ 31 65566518 == 3P6 3D6 4P1 1 5D 5D/ 1 2P 6D/ 32 65566518 == 3P6 3D6 4P1 1 5D 5D/ 1 2P 6F/ 33 65566517 == 3P6 3D6 4S1 13 1D 1D/ 1 2S 2D/ 34 65566518 == 3P6 3D6 4P1 1 5D 5D/ 1 2P 6P/ 35 65566518 == 3P6 3D6 4P1 1 5D 5D/ 1 2P 4D/ 36 65566518 == 3P6 3D6 4P1 1 5D 5D/ 1 2P 4F/ 37 65566518 == 3P6 3D6 4P1 1 5D 5D/ 1 2P 4P/ 38 65566518 == 3P6 3D6 4P1 8 3P 3P/ 1 2P 4S/ 39 65566518 == 3P6 3D6 4P1 2 3H 3H/ 1 2P 4I/ 40 65566518 == 3P6 3D6 4P1 * 2 3H 3H/ 1 2P 4G/ 41 65566518 == 3P6 3D6 4P1 2 3H 3H/ 1 2P 4H/ 42 65566518 == 3P6 3D6 4P1 5 3F 3F/ 1 2P 4F/ 43 65566518 == 3P6 3D6 4P1 2 3H 3H/ 1 2P 2G/ 44 65566518 == 3P6 3D6 4P1 * 8 3P 3P/ 1 2P 2D/ 45 65566518 == 3P6 3D6 4P1 2 3H 3H/ 1 2P 2I/ 46 65566518 == 3P6 3D6 4P1 8 3P 3P/ 1 2P 4P/ 47 65566518 == 3P6 3D6 4P1 5 3F 3F/ 1 2P 4G/ 48 65566518 == 3P6 3D6 4P1 5 3F 3F/ 1 2P 4D/ 49 65566518 == 3P6 3D6 4P1 8 3P 3P/ 1 2P 4D/ 50 65566518 == 3P6 3D6 4P1 3 3G 3G/ 1 2P 2H/ 51 65566518 == 3P6 3D6 4P1 * 5 3F 3F/ 1 2P 2F/ 52 65566518 == 3P6 3D6 4P1 3 3G 3G/ 1 2P 4F/ 53 65566517 == 3P6 3D6 4S1 15 1S 1S/ 1 2S 2S/ 54 65566518 == 3P6 3D6 4P1 8 3P 3P/ 1 2P 2S/ 55 65566518 == 3P6 3D6 4P1 3 3G 3G/ 1 2P 4G/ 56 65566518 == 3P6 3D6 4P1 3 3G 3G/ 1 2P 4H/ 57 65566518 == 3P6 3D6 4P1 5 3F 3F/ 1 2P 2G/ 58 65566518 == 3P6 3D6 4P1 * 8 3P 3P/ 1 2P 2P/ 59 65566518 == 3P6 3D6 4P1 5 3F 3F/ 1 2P 2D/ 60 65566518 == 3P6 3D6 4P1 9 1I 1I/ 1 2P 2K/ 61 65566518 == 3P6 3D6 4P1 * 2 3H 3H/ 1 2P 2H/ 62 65566518 == 3P6 3D6 4P1 3 3G 3G/ 1 2P 2F/ 63 65566518 == 3P6 3D6 4P1 6 3D 3D/ 1 2P 4P/ 64 65566518 == 3P6 3D6 4P1 3 3G 3G/ 1 2P 2G/ 65 65566518 == 3P6 3D6 4P1 9 1I 1I/ 1 2P 2H/ 66 65566518 == 3P6 3D6 4P1 * 11 1G 1G/ 1 2P 2H/ 67 65566518 == 3P6 3D6 4P1 11 1G 1G/ 1 2P 2G/ 68 65566518 == 3P6 3D6 4P1 6 3D 3D/ 1 2P 4F/ 69 65566518 == 3P6 3D6 4P1 6 3D 3D/ 1 2P 4D/ 70 65566518 == 3P6 3D6 4P1 11 1G 1G/ 1 2P 2F/ 71 65566518 == 3P6 3D6 4P1 9 1I 1I/ 1 2P 2I/ 72 65566518 == 3P6 3D6 4P1 6 3D 3D/ 1 2P 2P/ 73 65566518 == 3P6 3D6 4P1 6 3D 3D/ 1 2P 2D/ 74 65566518 == 3P6 3D6 4P1 6 3D 3D/ 1 2P 2F/ 75 65566518 == 3P6 3D6 4P1 14 1D 1D/ 1 2P 2P/ 76 65566518 == 3P6 3D6 4P1 * 14 1D 1D/ 1 2P 2F/ 77 65566518 == 3P6 3D6 4P1 16 1S 1S/ 1 2P 2P/ 78 65566518 == 3P6 3D6 4P1 12 1F 1F/ 1 2P 2D/ 79 65566518 == 3P6 3D6 4P1 14 1D 1D/ 1 2P 2D/ 80 65566518 == 3P6 3D6 4P1 12 1F 1F/ 1 2P 2G/ 81 65566518 == 3P6 3D6 4P1 4 3F 3F/ 1 2P 4D/ 82 65566518 == 3P6 3D6 4P1 12 1F 1F/ 1 2P 2F/ 83 65566518 == 3P6 3D6 4P1 7 3P 3P/ 1 2P 2S/ 84 65566518 == 3P6 3D6 4P1 4 3F 3F/ 1 2P 4G/ 85 65566518 == 3P6 3D6 4P1 7 3P 3P/ 1 2P 4S/ 86 65566518 == 3P6 3D6 4P1 4 3F 3F/ 1 2P 2D/ 87 65566518 == 3P6 3D6 4P1 4 3F 3F/ 1 2P 2G/ 88 65566518 == 3P6 3D6 4P1 7 3P 3P/ 1 2P 4P/ 89 65566518 == 3P6 3D6 4P1 7 3P 3P/ 1 2P 4D/ 90 65566518 == 3P6 3D6 4P1 4 3F 3F/ 1 2P 4F/ 91 65566518 == 3P6 3D6 4P1 * 7 3P 3P/ 1 2P 2D/ 92 65566518 == 3P6 3D6 4P1 4 3F 3F/ 1 2P 2F/ 93 65566518 == 3P6 3D6 4P1 10 1G 1G/ 1 2P 2H/ 94 65566518 == 3P6 3D6 4P1 7 3P 3P/ 1 2P 2P/ 95 65566518 == 3P6 3D6 4P1 10 1G 1G/ 1 2P 2G/ 96 65566518 == 3P6 3D6 4P1 10 1G 1G/ 1 2P 2F/ 97 24555586 == 3S2 3P5 3D8 1 2P 2P/ 1 3F 4G/ 98 65566518 == 3P6 3D6 4P1 13 1D 1D/ 1 2P 2D/ 99 65566518 == 3P6 3D6 4P1 13 1D 1D/ 1 2P 2F/ 100 65566518 == 3P6 3D6 4P1 13 1D 1D/ 1 2P 2P/ 101 24555586 == 3S2 3P5 3D8 * 1 2P 2P/ 1 3F 2D/ 102 24555586 == 3S2 3P5 3D8 1 2P 2P/ 2 3P 2S/ 103 24555586 == 3S2 3P5 3D8 * 1 2P 2P/ 4 1D 2F/ 104 24555586 == 3S2 3P5 3D8 1 2P 2P/ 2 3P 4D/ 105 24555586 == 3S2 3P5 3D8 1 2P 2P/ 1 3F 4F/ 106 24555586 == 3S2 3P5 3D8 1 2P 2P/ 2 3P 4P/ 107 65566518 == 3P6 3D6 4P1 15 1S 1S/ 1 2P 2P/ 108 24555586 == 3S2 3P5 3D8 1 2P 2P/ 3 1G 2G/ 109 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 6F/ 110 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 6D/ 111 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 6G/ 112 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 6P/ 113 24555586 == 3S2 3P5 3D8 1 2P 2P/ 3 1G 2H/ 114 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 4D/ 115 24555586 == 3S2 3P5 3D8 1 2P 2P/ 1 3F 4D/ 116 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 4F/ 117 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 4G/ 118 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 4S/ 119 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 6S/ 120 24555586 == 3S2 3P5 3D8 1 2P 2P/ 4 1D 2P/ 121 65566519 == 3P6 3D6 4D1 1 5D 5D/ 1 2D 4P/ 122 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 2F/ 123 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 4K/ 124 24555586 == 3S2 3P5 3D8 1 2P 2P/ 2 3P 4S/ 125 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 4G/ 126 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 4H/ 127 65566519 == 3P6 3D6 4D1 8 3P 3P/ 1 2D 4P/ 128 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 4I/ 129 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 2K/ 130 65566519 == 3P6 3D6 4D1 * 5 3F 3F/ 1 2D 4G/ 131 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 4D/ 132 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 2I/ 133 65566519 == 3P6 3D6 4D1 8 3P 3P/ 1 2D 4D/ 134 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 2G/ 135 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 4H/ 136 65566519 == 3P6 3D6 4D1 * 8 3P 3P/ 1 2D 2D/ 137 65566519 == 3P6 3D6 4D1 8 3P 3P/ 1 2D 2F/ 138 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 2F/ 139 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 2G/ 140 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 4P/ 141 24555586 == 3S2 3P5 3D8 1 2P 2P/ 3 1G 2F/ 142 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 2H/ 143 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 2H/ 144 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 4H/ 145 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 4I/ 146 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 4G/ 147 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 4D/ 148 65566519 == 3P6 3D6 4D1 8 3P 3P/ 1 2D 4F/ 149 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 2H/ 150 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 2G/ 151 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 2D/ 152 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 2I/ 153 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 4F/ 154 65566519 == 3P6 3D6 4D1 9 1I 1I/ 1 2D 2L/ 155 65566519 == 3P6 3D6 4D1 3 3G 3G/ 1 2D 2D/ 156 65566519 == 3P6 3D6 4D1 5 3F 3F/ 1 2D 2P/ 157 24555586 == 3S2 3P5 3D8 1 2P 2P/ 5 1S 2P/ 158 65566519 == 3P6 3D6 4D1 2 3H 3H/ 1 2D 4F/ 159 65566519 == 3P6 3D6 4D1 * 3 3G 3G/ 1 2D 4F/ 160 65566519 == 3P6 3D6 4D1 * 3 3G 3G/ 1 2D 2F/ 161 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 4S/ 162 65566519 == 3P6 3D6 4D1 9 1I 1I/ 1 2D 2K/ 163 65566519 == 3P6 3D6 4D1 9 1I 1I/ 1 2D 2G/ 164 65566519 == 3P6 3D6 4D1 * 16 1S 1S/ 1 2D 2D/ 165 65566519 == 3P6 3D6 4D1 9 1I 1I/ 1 2D 2I/ 166 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 4F/ 167 65566519 == 3P6 3D6 4D1 * 6 3D 3D/ 1 2D 2P/ 168 65566519 == 3P6 3D6 4D1 11 1G 1G/ 1 2D 2H/ 169 24555586 == 3S2 3P5 3D8 1 2P 2P/ 4 1D 2D/ 170 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 4G/ 171 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 4D/ 172 65566519 == 3P6 3D6 4D1 11 1G 1G/ 1 2D 2F/ 173 65566519 == 3P6 3D6 4D1 11 1G 1G/ 1 2D 2I/ 174 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 2G/ 175 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 2D/ 176 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 2S/ 177 65566519 == 3P6 3D6 4D1 14 1D 1D/ 1 2D 2S/ 178 65566519 == 3P6 3D6 4D1 14 1D 1D/ 1 2D 2G/ 179 65566519 == 3P6 3D6 4D1 11 1G 1G/ 1 2D 2D/ 180 65566519 == 3P6 3D6 4D1 14 1D 1D/ 1 2D 2F/ 181 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 4P/ 182 65566519 == 3P6 3D6 4D1 12 1F 1F/ 1 2D 2H/ 183 65566519 == 3P6 3D6 4D1 12 1F 1F/ 1 2D 2P/ 184 65566519 == 3P6 3D6 4D1 14 1D 1D/ 1 2D 2D/ 185 65566519 == 3P6 3D6 4D1 12 1F 1F/ 1 2D 2F/ 186 24555586 == 3S2 3P5 3D8 1 2P 2P/ 1 3F 2F/ 187 65566519 == 3P6 3D6 4D1 12 1F 1F/ 1 2D 2G/ 188 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 2H/ 189 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 4D/ 190 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 2P/ 191 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 4H/ 192 65566519 == 3P6 3D6 4D1 7 3P 3P/ 1 2D 4F/ 193 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 2F/ 194 65566519 == 3P6 3D6 4D1 * 14 1D 1D/ 1 2D 2P/ 195 65566519 == 3P6 3D6 4D1 7 3P 3P/ 1 2D 4P/ 196 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 4G/ 197 65566519 == 3P6 3D6 4D1 7 3P 3P/ 1 2D 2P/ 198 65566519 == 3P6 3D6 4D1 * 7 3P 3P/ 1 2D 4D/ 199 65566519 == 3P6 3D6 4D1 12 1F 1F/ 1 2D 2D/ 200 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 2G/ 201 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 2D/ 202 65566519 == 3P6 3D6 4D1 * 9 1I 1I/ 1 2D 2H/ 203 65566519 == 3P6 3D6 4D1 7 3P 3P/ 1 2D 2F/ 204 65566519 == 3P6 3D6 4D1 6 3D 3D/ 1 2D 2F/ 205 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 4F/ 206 65566519 == 3P6 3D6 4D1 10 1G 1G/ 1 2D 2I/ 207 65566519 == 3P6 3D6 4D1 10 1G 1G/ 1 2D 2G/ 208 24555586 == 3S2 3P5 3D8 1 2P 2P/ 1 3F 2G/ 209 65566519 == 3P6 3D6 4D1 11 1G 1G/ 1 2D 2G/ 210 65566519 == 3P6 3D6 4D1 * 10 1G 1G/ 1 2D 2F/ 211 65566519 == 3P6 3D6 4D1 10 1G 1G/ 1 2D 2D/ 212 65566519 == 3P6 3D6 4D1 8 3P 3P/ 1 2D 2P/ 213 65566519 == 3P6 3D6 4D1 7 3P 3P/ 1 2D 2D/ 214 24555586 == 3S2 3P5 3D8 1 2P 2P/ 2 3P 2D/ 215 65566519 == 3P6 3D6 4D1 4 3F 3F/ 1 2D 4P/ 216 65566519 == 3P6 3D6 4D1 10 1G 1G/ 1 2D 2H/ 217 24555586 == 3S2 3P5 3D8 1 2P 2P/ 2 3P 2P/ 218 65566519 == 3P6 3D6 4D1 13 1D 1D/ 1 2D 2G/ 219 65566519 == 3P6 3D6 4D1 13 1D 1D/ 1 2D 2P/ 220 65566519 == 3P6 3D6 4D1 13 1D 1D/ 1 2D 2F/ 221 65566519 == 3P6 3D6 4D1 13 1D 1D/ 1 2D 2S/ 222 65566519 == 3P6 3D6 4D1 13 1D 1D/ 1 2D 2D/ 223 65566519 == 3P6 3D6 4D1 15 1S 1S/ 1 2D 2D/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 Map to LS levels : 1 1 1 1 2 2 3 2 3 4 5 6 4 5 6 7 7 8 8 9 9 9 9 9 10 10 10 10 11 11 11 11 12 13 13 13 12 14 13 14 12 15 15 16 15 17 15 16 17 18 18 19 19 20 20 20 20 21 21 22 22 23 24 24 25 25 27 27 26 26 26 26 27 29 28 28 29 30 30 31 31 31 31 31 32 32 32 32 32 32 34 33 33 34 35 36 35 34 35 36 35 36 36 37 37 37 40 39 41 39 39 38 40 40 47 44 41 42 39 42 41 43 41 42 43 42 45 46 46 49 49 45 48 52 48 51 47 47 50 49 48 48 47 52 40 50 46 44 55 51 49 56 53 52 54 56 56 57 56 55 52 55 55 57 60 58 58 59 61 62 62 61 59 65 60 63 66 64 63 64 69 68 67 68 70 63 69 65 71 69 71 68 67 69 72 68 70 66 72 73 73 74 75 74 77 76 79 78 75 76 80 77 80 79 89 81 81 81 78 82 82 83 84 84 84 85 84 86 87 88 86 88 81 87 90 89 90 90 88 90 89 91 89 93 92 94 91 92 95 94 93 96 95 97 96 97 97 97 98 98 103 99 101 100 100 99 101 104 104 102 105 106 104 105 115 105 107 105 108 107 108 103 106 113 109 109 109 109 109 106 109 110 110 110 111 110 110 111 112 112 111 112 111 111 114 111 120 117 114 116 114 114 116 115 117 115 116 117 116 118 117 119 115 104 120 121 121 121 113 122 125 125 123 123 125 123 123 124 122 126 126 128 127 126 127 126 127 128 128 148 130 128 133 141 129 129 158 130 131 158 137 130 134 131 132 130 133 133 136 132 153 158 131 135 135 134 135 131 135 125 140 142 139 138 153 159 153 194 143 159 138 164 144 139 143 136 140 133 140 145 142 144 148 148 157 146 145 147 159 144 144 146 146 147 145 137 146 147 145 141 147 149 150 152 151 149 156 151 150 169 154 152 154 155 155 156 160 160 162 161 163 162 163 166 166 165 167 166 165 168 168 166 170 170 167 170 171 171 171 172 170 173 172 171 173 174 174 175 176 175 179 164 180 169 204 178 177 178 157 184 179 181 181 181 182 182 180 183 183 185 199 184 186 158 159 153 187 187 192 193 188 185 186 188 189 189 189 189 190 190 148 191 191 192 191 191 192 195 195 192 195 197 196 196 198 196 196 193 198 211 210 197 198 213 200 198 201 200 201 202 203 203 202 205 208 205 207 206 205 205 206 207 208 209 209 212 199 214 194 212 215 214 216 215 215 216 210 204 213 211 217 217 218 218 219 219 220 220 221 222 222 223 223 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#ge32-07_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 75 95 75 75 75 Parity 1 Parity 2 Allowed 43324 18114 37359 initially 8297 3479 9616 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 27/02/06 --------------------------------------------------------------------------------