ls#ge8.dat
Resolved Specific Ion Data Collections
- Ion
- Ge8+
- Temperature Range
- 1.396 eV → 1.534 x 104 eV
ADF04
- Filename
- ls#ge8.dat
- Full Path
- adf04/copmm#32/ls#ge8.dat
Download data
- Spontaneous Emission: Ge+8(i) → Ge+8(j) + hv
- Electron Impact Excitation: Ge+8(i) + e → Ge+8(j) + e
| 65566 5D12.0 | 0.0 cm-1 |
| 65566 3H16.0 | 30145.0 cm-1 |
| 65566 3P4.0 | 34633.0 cm-1 |
| 65566 3F10.0 | 34913.0 cm-1 |
| 65566 3G13.0 | 40145.8 cm-1 |
| 65566 1I6.0 | 46887.9 cm-1 |
| 65566 3D7.0 | 49893.7 cm-1 |
| 65566 1G4.0 | 50646.7 cm-1 |
| 65566 1S0.0 | 58638.0 cm-1 |
| 65566 1D2.0 | 61802.0 cm-1 |
| 65566 1F3.0 | 69740.0 cm-1 |
| 65566 3F10.0 | 83085.0 cm-1 |
| 65566 3P4.0 | 83826.0 cm-1 |
| 65566 1G4.0 | 94107.0 cm-1 |
| 65566 1D2.0 | 126429.0 cm-1 |
| 65566 1S0.0 | 163740.0 cm-1 |
| 65556517 7S3.0 | 584490.0 cm-1 |
| 65556517 5S2.0 | 599010.0 cm-1 |
| 65556517 5G22.0 | 634810.0 cm-1 |
| 65556517 5P7.0 | 640860.0 cm-1 |
| 65556517 3G13.0 | 644430.0 cm-1 |
| 65556517 5D12.0 | 647030.0 cm-1 |
| 65556517 3P4.0 | 651030.0 cm-1 |
| 65556517 3D7.0 | 656740.0 cm-1 |
| 65556517 3I19.0 | 657870.0 cm-1 |
| 65556517 1I6.0 | 662610.0 cm-1 |
| 65556517 3D7.0 | 665600.0 cm-1 |
| 65556517 5F17.0 | 666770.0 cm-1 |
| 65556517 1D2.0 | 670270.0 cm-1 |
| 65556517 3F10.0 | 671890.0 cm-1 |
| 65556517 3H16.0 | 674060.0 cm-1 |
| 65556517 3G13.0 | 677100.0 cm-1 |
| 65556517 3F10.0 | 677190.0 cm-1 |
| 65556517 1F3.0 | 677510.0 cm-1 |
| 65556517 1H5.0 | 680720.0 cm-1 |
| 65556517 1G4.0 | 682700.0 cm-1 |
| 65556517 3F10.0 | 683470.0 cm-1 |
| 65556517 1F3.0 | 688130.0 cm-1 |
| 65556517 3S1.0 | 692580.0 cm-1 |
| 65556517 1S0.0 | 697600.0 cm-1 |
| 65556517 3D7.0 | 704030.0 cm-1 |
| 65556517 1D2.0 | 708880.0 cm-1 |
| 24555576 5G22.0 | 715020.0 cm-1 |
| 65556517 3G13.0 | 715300.0 cm-1 |
| 65556518 7P10.0 | 718020.0 cm-1 |
| 65556517 1G4.0 | 720130.0 cm-1 |
| 65556518 5P7.0 | 731640.0 cm-1 |
| 24555576 1S0.0 | 733770.0 cm-1 |
| 24555576 3D7.0 | 735540.0 cm-1 |
| 65556517 3P4.0 | 742680.0 cm-1 |
| 24555576 5F17.0 | 745560.0 cm-1 |
| 65556517 1P1.0 | 747330.0 cm-1 |
| 24555576 3H16.0 | 749550.0 cm-1 |
| 24555576 5D12.0 | 753660.0 cm-1 |
| 24555576 3F10.0 | 755530.0 cm-1 |
| 65556517 3D7.0 | 755730.0 cm-1 |
| 65556517 1D2.0 | 760500.0 cm-1 |
| 24555576 3G13.0 | 761330.0 cm-1 |
| 24555576 5S2.0 | 761770.0 cm-1 |
| 65556518 5G22.0 | 763850.0 cm-1 |
| 65556518 5P7.0 | 768250.0 cm-1 |
| 65556518 5H27.0 | 768780.0 cm-1 |
| 24555576 3P4.0 | 770210.0 cm-1 |
| 65556518 5S2.0 | 770400.0 cm-1 |
| 65556518 5F17.0 | 771390.0 cm-1 |
| 65556518 5D12.0 | 772050.0 cm-1 |
| 24555576 1D2.0 | 772820.0 cm-1 |
| 65556518 3F10.0 | 774640.0 cm-1 |
| 65556518 3H16.0 | 775410.0 cm-1 |
| 24555576 3I19.0 | 775600.0 cm-1 |
| 65556518 5D12.0 | 778520.0 cm-1 |
| 65556518 3P4.0 | 779610.0 cm-1 |
| 65556518 5F17.0 | 779750.0 cm-1 |
| 65556518 3G13.0 | 781040.0 cm-1 |
| 65556518 3D7.0 | 782790.0 cm-1 |
| 24555576 3P4.0 | 783110.0 cm-1 |
| 24555576 1G4.0 | 785080.0 cm-1 |
| 24555576 1F3.0 | 785370.0 cm-1 |
| 65556518 3D7.0 | 785750.0 cm-1 |
| 65556518 5P7.0 | 785780.0 cm-1 |
| 65556518 3F10.0 | 788330.0 cm-1 |
| 65556518 3J22.0 | 788900.0 cm-1 |
| 65556518 3S1.0 | 789750.0 cm-1 |
| 65556518 3I19.0 | 791200.0 cm-1 |
| 65556518 3H16.0 | 791510.0 cm-1 |
| 65556518 1J7.0 | 794280.0 cm-1 |
| 65556518 1H5.0 | 794380.0 cm-1 |
| 65556518 3P4.0 | 794420.0 cm-1 |
| 24555576 3F10.0 | 794860.0 cm-1 |
| 65556518 3F10.0 | 798620.0 cm-1 |
| 65556518 1I6.0 | 799770.0 cm-1 |
| 24555576 5P7.0 | 800590.0 cm-1 |
| 65556518 3D7.0 | 800880.0 cm-1 |
| 65556518 3D7.0 | 800920.0 cm-1 |
| 65556518 1G4.0 | 800970.0 cm-1 |
| 24555576 1H5.0 | 801020.0 cm-1 |
| 65556518 5G22.0 | 801550.0 cm-1 |
| 24555576 5D12.0 | 802080.0 cm-1 |
| 65556518 3G13.0 | 802900.0 cm-1 |
| 65556518 3P4.0 | 803300.0 cm-1 |
| 65556518 1G4.0 | 803990.0 cm-1 |
| 65556518 3F10.0 | 804000.0 cm-1 |
| 65556518 5F17.0 | 804760.0 cm-1 |
| 65556518 5D12.0 | 806750.0 cm-1 |
| 65556518 3H16.0 | 806830.0 cm-1 |
| 65556518 3G13.0 | 807640.0 cm-1 |
| 65556518 1D2.0 | 808010.0 cm-1 |
| 65556518 3I19.0 | 808620.0 cm-1 |
| 65556518 3G13.0 | 809390.0 cm-1 |
| 65556518 3F10.0 | 809690.0 cm-1 |
| 65556518 1I6.0 | 810430.0 cm-1 |
| 65556518 1P1.0 | 810730.0 cm-1 |
| 24555576 3D7.0 | 810780.0 cm-1 |
| 65556518 3G13.0 | 811150.0 cm-1 |
| 65556518 1F3.0 | 811820.0 cm-1 |
| 65556518 1D2.0 | 812010.0 cm-1 |
| 65556518 3H16.0 | 812990.0 cm-1 |
| 65556518 3D7.0 | 813900.0 cm-1 |
| 65556518 1H5.0 | 814200.0 cm-1 |
| 24555576 3H16.0 | 814800.0 cm-1 |
| 65556518 3F10.0 | 814830.0 cm-1 |
| 65556518 1G4.0 | 816120.0 cm-1 |
| 65556518 1D2.0 | 818000.0 cm-1 |
| 65556518 1F3.0 | 818580.0 cm-1 |
| 65556518 3F10.0 | 818910.0 cm-1 |
| 65556518 1H5.0 | 819280.0 cm-1 |
| 65556518 3D7.0 | 820400.0 cm-1 |
| 65556518 3G13.0 | 820920.0 cm-1 |
| 65556518 3P4.0 | 823390.0 cm-1 |
| 24555576 3G13.0 | 824280.0 cm-1 |
| 24555576 1D2.0 | 824280.0 cm-1 |
| 65556518 1G4.0 | 825400.0 cm-1 |
| 65556518 1P1.0 | 827430.0 cm-1 |
| 65556518 1F3.0 | 828930.0 cm-1 |
| 24555576 3F10.0 | 836540.0 cm-1 |
| 65556518 3D7.0 | 838610.0 cm-1 |
| 65556518 3F10.0 | 839090.0 cm-1 |
| 65556518 1F3.0 | 842240.0 cm-1 |
| 65556518 3P4.0 | 843450.0 cm-1 |
| 65556518 1P1.0 | 845400.0 cm-1 |
| 65556518 1D2.0 | 845790.0 cm-1 |
| 65556518 1F3.0 | 846800.0 cm-1 |
| 24555576 3D7.0 | 847710.0 cm-1 |
| 65556518 3H16.0 | 848790.0 cm-1 |
| 24555576 3S1.0 | 849350.0 cm-1 |
| 65556518 3F10.0 | 849380.0 cm-1 |
| 24555576 3D7.0 | 850270.0 cm-1 |
| 24555576 1I6.0 | 851310.0 cm-1 |
| 65556518 3G13.0 | 851960.0 cm-1 |
| 24555576 3G13.0 | 854830.0 cm-1 |
| 65556518 1H5.0 | 855450.0 cm-1 |
| 65556518 1G4.0 | 856620.0 cm-1 |
| 65556518 1F3.0 | 857540.0 cm-1 |
| 24555576 3F10.0 | 860750.0 cm-1 |
| 24555576 1P1.0 | 860930.0 cm-1 |
| 24555576 3D7.0 | 861930.0 cm-1 |
| 24555576 1G4.0 | 866600.0 cm-1 |
| 65556518 3P4.0 | 867090.0 cm-1 |
| 65556518 1S0.0 | 874950.0 cm-1 |
| 24555576 3P4.0 | 875280.0 cm-1 |
| 65556518 3D7.0 | 875700.0 cm-1 |
| 65556518 1D2.0 | 879090.0 cm-1 |
| 65556518 3S1.0 | 880490.0 cm-1 |
| 65556518 1P1.0 | 882830.0 cm-1 |
| 65556518 3F10.0 | 891410.0 cm-1 |
| 65556518 1D2.0 | 893490.0 cm-1 |
| 65556518 3D7.0 | 895020.0 cm-1 |
| 65556518 1F3.0 | 897700.0 cm-1 |
| 65556518 3P4.0 | 898540.0 cm-1 |
| 65556518 1P1.0 | 906810.0 cm-1 |
| 24555576 3P4.0 | 908530.0 cm-1 |
| 24555576 1F3.0 | 910630.0 cm-1 |
| 24555576 3F10.0 | 911180.0 cm-1 |
| 24555576 1G4.0 | 912190.0 cm-1 |
| 24555576 1P1.0 | 913740.0 cm-1 |
| 24555576 3G13.0 | 915180.0 cm-1 |
| 65556519 7D17.0 | 921100.0 cm-1 |
| 24555576 1D2.0 | 923150.0 cm-1 |
| 24555576 1F3.0 | 927250.0 cm-1 |
| 65556519 5D12.0 | 933050.0 cm-1 |
| 24555576 1H5.0 | 944230.0 cm-1 |
| 24555576 3D7.0 | 952800.0 cm-1 |
| 24555576 3S1.0 | 953430.0 cm-1 |
| 24555576 1D2.0 | 966040.0 cm-1 |
| 65556519 5H27.0 | 968560.0 cm-1 |
| 65556519 5F17.0 | 969970.0 cm-1 |
| 65556519 5I32.0 | 970670.0 cm-1 |
| 65556519 5G22.0 | 970960.0 cm-1 |
| 65556519 3D7.0 | 971770.0 cm-1 |
| 65556519 5P7.0 | 974560.0 cm-1 |
| 65556519 3I19.0 | 974960.0 cm-1 |
| 65556519 5F17.0 | 975100.0 cm-1 |
| 65556519 5D12.0 | 975180.0 cm-1 |
| 24555576 1F3.0 | 975250.0 cm-1 |
| 65556519 3G13.0 | 977450.0 cm-1 |
| 65556519 3H16.0 | 979000.0 cm-1 |
| 65556519 3F10.0 | 979180.0 cm-1 |
| 65556519 5D12.0 | 980420.0 cm-1 |
| 65556519 3D7.0 | 981690.0 cm-1 |
| 65556519 5G22.0 | 981840.0 cm-1 |
| 65556519 5P7.0 | 983880.0 cm-1 |
| 65556519 3F10.0 | 984320.0 cm-1 |
| 65556519 3P4.0 | 984540.0 cm-1 |
| 65556519 5S2.0 | 985090.0 cm-1 |
| 65556519 5F17.0 | 985300.0 cm-1 |
| 65556519 3S1.0 | 988290.0 cm-1 |
| 65556519 3G13.0 | 988660.0 cm-1 |
| 65556519 3F10.0 | 989810.0 cm-1 |
| 65556519 3I19.0 | 990470.0 cm-1 |
| 65556519 1H5.0 | 991480.0 cm-1 |
| 65556519 3K25.0 | 991870.0 cm-1 |
| 65556519 3J22.0 | 992880.0 cm-1 |
| 65556519 3D7.0 | 993370.0 cm-1 |
| 65556519 3P4.0 | 993800.0 cm-1 |
| 65556519 1K8.0 | 994280.0 cm-1 |
| 65556519 1J7.0 | 994320.0 cm-1 |
| 65556519 1G4.0 | 996670.0 cm-1 |
| 65556519 3S1.0 | 997480.0 cm-1 |
| 24555576 1P1.0 | 1000010.0 cm-1 |
| 65556519 3G13.0 | 1000400.0 cm-1 |
| 65556519 1F3.0 | 1000490.0 cm-1 |
| 65556519 3H16.0 | 1001200.0 cm-1 |
| 65556519 1P1.0 | 1001670.0 cm-1 |
| 65556519 5F17.0 | 1001700.0 cm-1 |
| 65556519 5H27.0 | 1002720.0 cm-1 |
| 65556519 5P7.0 | 1002740.0 cm-1 |
| 65556519 3G13.0 | 1002820.0 cm-1 |
| 65556519 3G13.0 | 1002850.0 cm-1 |
| 65556519 3D7.0 | 1003270.0 cm-1 |
| 65556519 1I6.0 | 1003630.0 cm-1 |
| 65556519 1D2.0 | 1003690.0 cm-1 |
| 65556519 3F10.0 | 1004200.0 cm-1 |
| 65556519 3F10.0 | 1004700.0 cm-1 |
| 65556519 5G22.0 | 1004700.0 cm-1 |
| 65556519 1H5.0 | 1004940.0 cm-1 |
| 65556519 3I19.0 | 1005720.0 cm-1 |
| 65556519 3D7.0 | 1005790.0 cm-1 |
| 65556519 1F3.0 | 1006770.0 cm-1 |
| 65556519 3H16.0 | 1006780.0 cm-1 |
| 65556519 1P1.0 | 1007470.0 cm-1 |
| 65556519 3H16.0 | 1008090.0 cm-1 |
| 65556519 3P4.0 | 1008300.0 cm-1 |
| 65556519 3G13.0 | 1008500.0 cm-1 |
| 65556519 1G4.0 | 1009250.0 cm-1 |
| 65556519 3J22.0 | 1009560.0 cm-1 |
| 65556519 3D7.0 | 1010020.0 cm-1 |
| 65556519 1H5.0 | 1010420.0 cm-1 |
| 65556519 1G4.0 | 1010960.0 cm-1 |
| 65556519 1J7.0 | 1011100.0 cm-1 |
| 65556519 3F10.0 | 1011900.0 cm-1 |
| 65556519 3H16.0 | 1012180.0 cm-1 |
| 65556519 3D7.0 | 1012980.0 cm-1 |
| 65556519 3G13.0 | 1013320.0 cm-1 |
| 65556519 1H5.0 | 1013550.0 cm-1 |
| 65556519 1D2.0 | 1013870.0 cm-1 |
| 65556519 1D2.0 | 1015160.0 cm-1 |
| 65556519 3F10.0 | 1016760.0 cm-1 |
| 65556519 1G4.0 | 1016900.0 cm-1 |
| 65556519 1I6.0 | 1018880.0 cm-1 |
| 65556519 3G13.0 | 1019500.0 cm-1 |
| 65556519 1F3.0 | 1020000.0 cm-1 |
| 65556519 3H16.0 | 1020180.0 cm-1 |
| 65556519 1P1.0 | 1021650.0 cm-1 |
| 65556519 1H5.0 | 1021670.0 cm-1 |
| 65556519 3I19.0 | 1023800.0 cm-1 |
| 65556519 3D7.0 | 1024110.0 cm-1 |
| 65556519 3G13.0 | 1024660.0 cm-1 |
| 65556519 1D2.0 | 1025750.0 cm-1 |
| 65556519 5D12.0 | 1027320.0 cm-1 |
| 65556519 3F10.0 | 1027700.0 cm-1 |
| 65556519 5D12.0 | 1028280.0 cm-1 |
| 65556519 3P4.0 | 1029440.0 cm-1 |
| 65556519 3F10.0 | 1029640.0 cm-1 |
| 65556519 3P4.0 | 1030080.0 cm-1 |
| 65556519 1G4.0 | 1033290.0 cm-1 |
| 65556519 3P4.0 | 1033510.0 cm-1 |
| 65556519 3G13.0 | 1038270.0 cm-1 |
| 65556519 3F10.0 | 1038850.0 cm-1 |
| 65556519 3S1.0 | 1039220.0 cm-1 |
| 65556519 1S0.0 | 1039530.0 cm-1 |
| 65556519 1F3.0 | 1040170.0 cm-1 |
| 65556519 1P1.0 | 1040430.0 cm-1 |
| 65556519 3H16.0 | 1041120.0 cm-1 |
| 65556519 3D7.0 | 1041340.0 cm-1 |
| 65556519 1F3.0 | 1042890.0 cm-1 |
| 65556519 1I6.0 | 1044800.0 cm-1 |
| 65556519 1G4.0 | 1045130.0 cm-1 |
| 65556519 1D2.0 | 1046540.0 cm-1 |
| 65556519 3D7.0 | 1048050.0 cm-1 |
| 65556519 1F3.0 | 1050150.0 cm-1 |
| 65556519 3I19.0 | 1050950.0 cm-1 |
| 65556519 1H5.0 | 1053550.0 cm-1 |
| 65556519 3P4.0 | 1056350.0 cm-1 |
| 65556519 3H16.0 | 1057450.0 cm-1 |
| 65556519 1D2.0 | 1061250.0 cm-1 |
| 65556519 3G13.0 | 1061550.0 cm-1 |
| 65556519 1G4.0 | 1063050.0 cm-1 |
| 65556519 3D7.0 | 1064250.0 cm-1 |
| 65556519 1F3.0 | 1066050.0 cm-1 |
| 65556519 1I6.0 | 1066550.0 cm-1 |
| 65556519 3F10.0 | 1069050.0 cm-1 |
| 65556519 1S0.0 | 1073050.0 cm-1 |
| 65556519 1D2.0 | 1074250.0 cm-1 |
| 65556519 1P1.0 | 1076550.0 cm-1 |
| 65556519 3D7.0 | 1080450.0 cm-1 |
| 65556519 1G4.0 | 1084550.0 cm-1 |
| 65556519 3F10.0 | 1088150.0 cm-1 |
| 65556519 3S1.0 | 1088750.0 cm-1 |
| 65556519 1F3.0 | 1089650.0 cm-1 |
| 65556519 3G13.0 | 1092850.0 cm-1 |
| 65556519 3P4.0 | 1093250.0 cm-1 |
| 65556519 3D7.0 | 1094150.0 cm-1 |
| 65556519 1P1.0 | 1097250.0 cm-1 |
| 65556519 1F3.0 | 1097250.0 cm-1 |
| 65556519 1D2.0 | 1097350.0 cm-1 |
| 65556519 3F10.0 | 1105350.0 cm-1 |
| 65556519 3P4.0 | 1107150.0 cm-1 |
| 65556519 1G4.0 | 1109850.0 cm-1 |
| 65556519 1D2.0 | 1127950.0 cm-1 |
| 65556519 1S0.0 | 1154850.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 65566 == 3P6 3D6 1 5D 5D/ 2 65566 == 3P6 3D6 2 3H 3H/ 3 65566 == 3P6 3D6 8 3P 3P/ 4 65566 == 3P6 3D6 5 3F 3F/ 5 65566 == 3P6 3D6 3 3G 3G/ 6 65566 == 3P6 3D6 9 1I 1I/ 7 65566 == 3P6 3D6 6 3D 3D/ 8 65566 == 3P6 3D6 11 1G 1G/ 9 65566 == 3P6 3D6 16 1S 1S/ 10 65566 == 3P6 3D6 14 1D 1D/ 11 65566 == 3P6 3D6 12 1F 1F/ 12 65566 == 3P6 3D6 4 3F 3F/ 13 65566 == 3P6 3D6 7 3P 3P/ 14 65566 == 3P6 3D6 10 1G 1G/ 15 65566 == 3P6 3D6 13 1D 1D/ 16 65566 == 3P6 3D6 15 1S 1S/ 17 65556517 == 3P6 3D5 4S1 1 6S 6S/ 1 2S 7S/ 18 65556517 == 3P6 3D5 4S1 1 6S 6S/ 1 2S 5S/ 19 65556517 == 3P6 3D5 4S1 2 4G 4G/ 1 2S 5G/ 20 65556517 == 3P6 3D5 4S1 5 4P 4P/ 1 2S 5P/ 21 65556517 == 3P6 3D5 4S1 2 4G 4G/ 1 2S 3G/ 22 65556517 == 3P6 3D5 4S1 4 4D 4D/ 1 2S 5D/ 23 65556517 == 3P6 3D5 4S1 5 4P 4P/ 1 2S 3P/ 24 65556517 == 3P6 3D5 4S1 4 4D 4D/ 1 2S 3D/ 25 65556517 == 3P6 3D5 4S1 6 2I 2I/ 1 2S 3I/ 26 65556517 == 3P6 3D5 4S1 6 2I 2I/ 1 2S 1I/ 27 65556517 == 3P6 3D5 4S1 * 14 2D 2D/ 1 2S 3D/ 28 65556517 == 3P6 3D5 4S1 3 4F 4F/ 1 2S 5F/ 29 65556517 == 3P6 3D5 4S1 * 14 2D 2D/ 1 2S 1D/ 30 65556517 == 3P6 3D5 4S1 * 10 2F 2F/ 1 2S 3F/ 31 65556517 == 3P6 3D5 4S1 7 2H 2H/ 1 2S 3H/ 32 65556517 == 3P6 3D5 4S1 * 9 2G 2G/ 1 2S 3G/ 33 65556517 == 3P6 3D5 4S1 3 4F 4F/ 1 2S 3F/ 34 65556517 == 3P6 3D5 4S1 10 2F 2F/ 1 2S 1F/ 35 65556517 == 3P6 3D5 4S1 7 2H 2H/ 1 2S 1H/ 36 65556517 == 3P6 3D5 4S1 9 2G 2G/ 1 2S 1G/ 37 65556517 == 3P6 3D5 4S1 11 2F 2F/ 1 2S 3F/ 38 65556517 == 3P6 3D5 4S1 11 2F 2F/ 1 2S 1F/ 39 65556517 == 3P6 3D5 4S1 16 2S 2S/ 1 2S 3S/ 40 65556517 == 3P6 3D5 4S1 16 2S 2S/ 1 2S 1S/ 41 65556517 == 3P6 3D5 4S1 13 2D 2D/ 1 2S 3D/ 42 65556517 == 3P6 3D5 4S1 13 2D 2D/ 1 2S 1D/ 43 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 5G/ 44 65556517 == 3P6 3D5 4S1 8 2G 2G/ 1 2S 3G/ 45 65556518 == 3P6 3D5 4P1 1 6S 6S/ 1 2P 7P/ 46 65556517 == 3P6 3D5 4S1 8 2G 2G/ 1 2S 1G/ 47 65556518 == 3P6 3D5 4P1 1 6S 6S/ 1 2P 5P/ 48 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 1S/ 49 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 8 2P 3D/ 50 65556517 == 3P6 3D5 4S1 15 2P 2P/ 1 2S 3P/ 51 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 5F/ 52 65556517 == 3P6 3D5 4S1 15 2P 2P/ 1 2S 1P/ 53 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 3H/ 54 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 2 4P 5D/ 55 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 3F/ 56 65556517 == 3P6 3D5 4S1 12 2D 2D/ 1 2S 3D/ 57 65556517 == 3P6 3D5 4S1 12 2D 2D/ 1 2S 1D/ 58 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 3G/ 59 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 5S/ 60 65556518 == 3P6 3D5 4P1 2 4G 4G/ 1 2P 5G/ 61 65556518 == 3P6 3D5 4P1 5 4P 4P/ 1 2P 5P/ 62 65556518 == 3P6 3D5 4P1 2 4G 4G/ 1 2P 5H/ 63 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 3P/ 64 65556518 == 3P6 3D5 4P1 5 4P 4P/ 1 2P 5S/ 65 65556518 == 3P6 3D5 4P1 2 4G 4G/ 1 2P 5F/ 66 65556518 == 3P6 3D5 4P1 5 4P 4P/ 1 2P 5D/ 67 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 5 2F 1D/ 68 65556518 == 3P6 3D5 4P1 2 4G 4G/ 1 2P 3F/ 69 65556518 == 3P6 3D5 4P1 2 4G 4G/ 1 2P 3H/ 70 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 3 2H 3I/ 71 65556518 == 3P6 3D5 4P1 4 4D 4D/ 1 2P 5D/ 72 65556518 == 3P6 3D5 4P1 5 4P 4P/ 1 2P 3P/ 73 65556518 == 3P6 3D5 4P1 4 4D 4D/ 1 2P 5F/ 74 65556518 == 3P6 3D5 4P1 2 4G 4G/ 1 2P 3G/ 75 65556518 == 3P6 3D5 4P1 5 4P 4P/ 1 2P 3D/ 76 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 3P/ 77 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 1G/ 78 24555576 == 3S2 3P5 3D7 1 2P 2P/ 7 2D 1F/ 79 65556518 == 3P6 3D5 4P1 4 4D 4D/ 1 2P 3D/ 80 65556518 == 3P6 3D5 4P1 4 4D 4D/ 1 2P 5P/ 81 65556518 == 3P6 3D5 4P1 4 4D 4D/ 1 2P 3F/ 82 65556518 == 3P6 3D5 4P1 6 2I 2I/ 1 2P 3K/ 83 65556518 == 3P6 3D5 4P1 5 4P 4P/ 1 2P 3S/ 84 65556518 == 3P6 3D5 4P1 6 2I 2I/ 1 2P 3I/ 85 65556518 == 3P6 3D5 4P1 6 2I 2I/ 1 2P 3H/ 86 65556518 == 3P6 3D5 4P1 6 2I 2I/ 1 2P 1K/ 87 65556518 == 3P6 3D5 4P1 6 2I 2I/ 1 2P 1H/ 88 65556518 == 3P6 3D5 4P1 4 4D 4D/ 1 2P 3P/ 89 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 5 2F 3F/ 90 65556518 == 3P6 3D5 4P1 10 2F 2F/ 1 2P 3F/ 91 65556518 == 3P6 3D5 4P1 6 2I 2I/ 1 2P 1I/ 92 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 5P/ 93 65556518 == 3P6 3D5 4P1 14 2D 2D/ 1 2P 3D/ 94 65556518 == 3P6 3D5 4P1 10 2F 2F/ 1 2P 3D/ 95 65556518 == 3P6 3D5 4P1 * 10 2F 2F/ 1 2P 1G/ 96 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 4 2G 1H/ 97 65556518 == 3P6 3D5 4P1 3 4F 4F/ 1 2P 5G/ 98 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 5D/ 99 65556518 == 3P6 3D5 4P1 10 2F 2F/ 1 2P 3G/ 100 65556518 == 3P6 3D5 4P1 14 2D 2D/ 1 2P 3P/ 101 65556518 == 3P6 3D5 4P1 * 9 2G 2G/ 1 2P 1G/ 102 65556518 == 3P6 3D5 4P1 14 2D 2D/ 1 2P 3F/ 103 65556518 == 3P6 3D5 4P1 3 4F 4F/ 1 2P 5F/ 104 65556518 == 3P6 3D5 4P1 3 4F 4F/ 1 2P 5D/ 105 65556518 == 3P6 3D5 4P1 7 2H 2H/ 1 2P 3H/ 106 65556518 == 3P6 3D5 4P1 9 2G 2G/ 1 2P 3G/ 107 65556518 == 3P6 3D5 4P1 10 2F 2F/ 1 2P 1D/ 108 65556518 == 3P6 3D5 4P1 7 2H 2H/ 1 2P 3I/ 109 65556518 == 3P6 3D5 4P1 3 4F 4F/ 1 2P 3G/ 110 65556518 == 3P6 3D5 4P1 9 2G 2G/ 1 2P 3F/ 111 65556518 == 3P6 3D5 4P1 7 2H 2H/ 1 2P 1I/ 112 65556518 == 3P6 3D5 4P1 14 2D 2D/ 1 2P 1P/ 113 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 3D/ 114 65556518 == 3P6 3D5 4P1 7 2H 2H/ 1 2P 3G/ 115 65556518 == 3P6 3D5 4P1 10 2F 2F/ 1 2P 1F/ 116 65556518 == 3P6 3D5 4P1 * 14 2D 2D/ 1 2P 1D/ 117 65556518 == 3P6 3D5 4P1 9 2G 2G/ 1 2P 3H/ 118 65556518 == 3P6 3D5 4P1 3 4F 4F/ 1 2P 3D/ 119 65556518 == 3P6 3D5 4P1 * 7 2H 2H/ 1 2P 1H/ 120 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 3H/ 121 65556518 == 3P6 3D5 4P1 3 4F 4F/ 1 2P 3F/ 122 65556518 == 3P6 3D5 4P1 * 11 2F 2F/ 1 2P 1G/ 123 65556518 == 3P6 3D5 4P1 11 2F 2F/ 1 2P 1D/ 124 65556518 == 3P6 3D5 4P1 9 2G 2G/ 1 2P 1F/ 125 65556518 == 3P6 3D5 4P1 11 2F 2F/ 1 2P 3F/ 126 65556518 == 3P6 3D5 4P1 9 2G 2G/ 1 2P 1H/ 127 65556518 == 3P6 3D5 4P1 11 2F 2F/ 1 2P 3D/ 128 65556518 == 3P6 3D5 4P1 11 2F 2F/ 1 2P 3G/ 129 65556518 == 3P6 3D5 4P1 16 2S 2S/ 1 2P 3P/ 130 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 3G/ 131 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 1D/ 132 65556518 == 3P6 3D5 4P1 7 2H 2H/ 1 2P 1G/ 133 65556518 == 3P6 3D5 4P1 16 2S 2S/ 1 2P 1P/ 134 65556518 == 3P6 3D5 4P1 11 2F 2F/ 1 2P 1F/ 135 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 4 2G 3F/ 136 65556518 == 3P6 3D5 4P1 13 2D 2D/ 1 2P 3D/ 137 65556518 == 3P6 3D5 4P1 13 2D 2D/ 1 2P 3F/ 138 65556518 == 3P6 3D5 4P1 13 2D 2D/ 1 2P 1F/ 139 65556518 == 3P6 3D5 4P1 13 2D 2D/ 1 2P 3P/ 140 65556518 == 3P6 3D5 4P1 13 2D 2D/ 1 2P 1P/ 141 65556518 == 3P6 3D5 4P1 13 2D 2D/ 1 2P 1D/ 142 65556518 == 3P6 3D5 4P1 * 14 2D 2D/ 1 2P 1F/ 143 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 3D/ 144 65556518 == 3P6 3D5 4P1 8 2G 2G/ 1 2P 3H/ 145 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 3S/ 146 65556518 == 3P6 3D5 4P1 8 2G 2G/ 1 2P 3F/ 147 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 3D/ 148 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 1I/ 149 65556518 == 3P6 3D5 4P1 8 2G 2G/ 1 2P 3G/ 150 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 3G/ 151 65556518 == 3P6 3D5 4P1 8 2G 2G/ 1 2P 1H/ 152 65556518 == 3P6 3D5 4P1 8 2G 2G/ 1 2P 1G/ 153 65556518 == 3P6 3D5 4P1 8 2G 2G/ 1 2P 1F/ 154 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 3F/ 155 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 7 2D 1P/ 156 24555576 == 3S2 3P5 3D7 * 1 2P 2P/ 5 2F 3D/ 157 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 1G/ 158 65556518 == 3P6 3D5 4P1 15 2P 2P/ 1 2P 3P/ 159 65556518 == 3P6 3D5 4P1 15 2P 2P/ 1 2P 1S/ 160 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 3P/ 161 65556518 == 3P6 3D5 4P1 15 2P 2P/ 1 2P 3D/ 162 65556518 == 3P6 3D5 4P1 15 2P 2P/ 1 2P 1D/ 163 65556518 == 3P6 3D5 4P1 15 2P 2P/ 1 2P 3S/ 164 65556518 == 3P6 3D5 4P1 * 15 2P 2P/ 1 2P 1P/ 165 65556518 == 3P6 3D5 4P1 12 2D 2D/ 1 2P 3F/ 166 65556518 == 3P6 3D5 4P1 * 12 2D 2D/ 1 2P 1D/ 167 65556518 == 3P6 3D5 4P1 12 2D 2D/ 1 2P 3D/ 168 65556518 == 3P6 3D5 4P1 12 2D 2D/ 1 2P 1F/ 169 65556518 == 3P6 3D5 4P1 12 2D 2D/ 1 2P 3P/ 170 65556518 == 3P6 3D5 4P1 12 2D 2D/ 1 2P 1P/ 171 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 3P/ 172 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 1F/ 173 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 3F/ 174 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 1G/ 175 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 1P/ 176 24555576 == 3S2 3P5 3D7 1 2P 2P/ 1 4F 3G/ 177 65556519 == 3P6 3D5 4D1 1 6S 6S/ 1 2D 7D/ 178 24555576 == 3S2 3P5 3D7 1 2P 2P/ 8 2P 1D/ 179 24555576 == 3S2 3P5 3D7 1 2P 2P/ 4 2G 1F/ 180 65556519 == 3P6 3D5 4D1 1 6S 6S/ 1 2D 5D/ 181 24555576 == 3S2 3P5 3D7 1 2P 2P/ 3 2H 1H/ 182 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 3D/ 183 24555576 == 3S2 3P5 3D7 1 2P 2P/ 2 4P 3S/ 184 24555576 == 3S2 3P5 3D7 1 2P 2P/ 7 2D 1D/ 185 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 5H/ 186 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 5F/ 187 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 5I/ 188 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 5G/ 189 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 3D/ 190 65556519 == 3P6 3D5 4D1 5 4P 4P/ 1 2D 5P/ 191 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 3I/ 192 65556519 == 3P6 3D5 4D1 5 4P 4P/ 1 2D 5F/ 193 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 5D/ 194 24555576 == 3S2 3P5 3D7 1 2P 2P/ 5 2F 1F/ 195 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 3G/ 196 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 3H/ 197 65556519 == 3P6 3D5 4D1 2 4G 4G/ 1 2D 3F/ 198 65556519 == 3P6 3D5 4D1 5 4P 4P/ 1 2D 5D/ 199 65556519 == 3P6 3D5 4D1 5 4P 4P/ 1 2D 3D/ 200 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 5G/ 201 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 5P/ 202 65556519 == 3P6 3D5 4D1 5 4P 4P/ 1 2D 3F/ 203 65556519 == 3P6 3D5 4D1 5 4P 4P/ 1 2D 3P/ 204 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 5S/ 205 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 5F/ 206 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 3S/ 207 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 3G/ 208 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 3F/ 209 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 3I/ 210 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 1H/ 211 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 3L/ 212 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 3K/ 213 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 3D/ 214 65556519 == 3P6 3D5 4D1 4 4D 4D/ 1 2D 3P/ 215 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 1L/ 216 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 1K/ 217 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 1G/ 218 65556519 == 3P6 3D5 4D1 14 2D 2D/ 1 2D 3S/ 219 24555576 == 3S2 3P5 3D7 1 2P 2P/ 6 2D 1P/ 220 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 3G/ 221 65556519 == 3P6 3D5 4D1 * 14 2D 2D/ 1 2D 1F/ 222 65556519 == 3P6 3D5 4D1 10 2F 2F/ 1 2D 3H/ 223 65556519 == 3P6 3D5 4D1 * 14 2D 2D/ 1 2D 1P/ 224 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 5F/ 225 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 5H/ 226 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 5P/ 227 65556519 == 3P6 3D5 4D1 * 10 2F 2F/ 1 2D 3G/ 228 65556519 == 3P6 3D5 4D1 14 2D 2D/ 1 2D 3G/ 229 65556519 == 3P6 3D5 4D1 14 2D 2D/ 1 2D 3D/ 230 65556519 == 3P6 3D5 4D1 * 7 2H 2H/ 1 2D 1I/ 231 65556519 == 3P6 3D5 4D1 * 14 2D 2D/ 1 2D 1D/ 232 65556519 == 3P6 3D5 4D1 * 14 2D 2D/ 1 2D 3F/ 233 65556519 == 3P6 3D5 4D1 10 2F 2F/ 1 2D 3F/ 234 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 5G/ 235 65556519 == 3P6 3D5 4D1 10 2F 2F/ 1 2D 1H/ 236 65556519 == 3P6 3D5 4D1 7 2H 2H/ 1 2D 3I/ 237 65556519 == 3P6 3D5 4D1 10 2F 2F/ 1 2D 3D/ 238 65556519 == 3P6 3D5 4D1 * 7 2H 2H/ 1 2D 1F/ 239 65556519 == 3P6 3D5 4D1 * 7 2H 2H/ 1 2D 3H/ 240 65556519 == 3P6 3D5 4D1 * 10 2F 2F/ 1 2D 1P/ 241 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 3H/ 242 65556519 == 3P6 3D5 4D1 14 2D 2D/ 1 2D 3P/ 243 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 3G/ 244 65556519 == 3P6 3D5 4D1 * 7 2H 2H/ 1 2D 1G/ 245 65556519 == 3P6 3D5 4D1 7 2H 2H/ 1 2D 3K/ 246 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 3D/ 247 65556519 == 3P6 3D5 4D1 7 2H 2H/ 1 2D 1H/ 248 65556519 == 3P6 3D5 4D1 14 2D 2D/ 1 2D 1G/ 249 65556519 == 3P6 3D5 4D1 7 2H 2H/ 1 2D 1K/ 250 65556519 == 3P6 3D5 4D1 * 9 2G 2G/ 1 2D 3F/ 251 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 3H/ 252 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 3D/ 253 65556519 == 3P6 3D5 4D1 * 7 2H 2H/ 1 2D 3G/ 254 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 1H/ 255 65556519 == 3P6 3D5 4D1 10 2F 2F/ 1 2D 1D/ 256 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 1D/ 257 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 3F/ 258 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 1G/ 259 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 1I/ 260 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 3G/ 261 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 1F/ 262 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 3H/ 263 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 1P/ 264 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 1H/ 265 65556519 == 3P6 3D5 4D1 * 9 2G 2G/ 1 2D 3I/ 266 65556519 == 3P6 3D5 4D1 16 2S 2S/ 1 2D 3D/ 267 65556519 == 3P6 3D5 4D1 9 2G 2G/ 1 2D 3G/ 268 65556519 == 3P6 3D5 4D1 16 2S 2S/ 1 2D 1D/ 269 65556519 == 3P6 3D5 4D1 * 4 4D 4D/ 1 2D 5D/ 270 65556519 == 3P6 3D5 4D1 * 7 2H 2H/ 1 2D 3F/ 271 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 5D/ 272 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 3P/ 273 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 3F/ 274 65556519 == 3P6 3D5 4D1 * 10 2F 2F/ 1 2D 3P/ 275 65556519 == 3P6 3D5 4D1 11 2F 2F/ 1 2D 1G/ 276 65556519 == 3P6 3D5 4D1 3 4F 4F/ 1 2D 3P/ 277 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 3G/ 278 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 3F/ 279 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 3S/ 280 65556519 == 3P6 3D5 4D1 14 2D 2D/ 1 2D 1S/ 281 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 1F/ 282 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 1P/ 283 65556519 == 3P6 3D5 4D1 6 2I 2I/ 1 2D 3H/ 284 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 3D/ 285 65556519 == 3P6 3D5 4D1 * 10 2F 2F/ 1 2D 1F/ 286 65556519 == 3P6 3D5 4D1 * 6 2I 2I/ 1 2D 1I/ 287 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 1G/ 288 65556519 == 3P6 3D5 4D1 * 11 2F 2F/ 1 2D 1D/ 289 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 3D/ 290 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 1F/ 291 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 3I/ 292 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 1H/ 293 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 3P/ 294 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 3H/ 295 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 1D/ 296 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 3G/ 297 65556519 == 3P6 3D5 4D1 10 2F 2F/ 1 2D 1G/ 298 65556519 == 3P6 3D5 4D1 * 11 2F 2F/ 1 2D 3D/ 299 65556519 == 3P6 3D5 4D1 * 9 2G 2G/ 1 2D 1F/ 300 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 1I/ 301 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 3F/ 302 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 1S/ 303 65556519 == 3P6 3D5 4D1 13 2D 2D/ 1 2D 1D/ 304 65556519 == 3P6 3D5 4D1 15 2P 2P/ 1 2D 1P/ 305 65556519 == 3P6 3D5 4D1 15 2P 2P/ 1 2D 3D/ 306 65556519 == 3P6 3D5 4D1 8 2G 2G/ 1 2D 1G/ 307 65556519 == 3P6 3D5 4D1 15 2P 2P/ 1 2D 3F/ 308 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 3S/ 309 65556519 == 3P6 3D5 4D1 15 2P 2P/ 1 2D 1F/ 310 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 3G/ 311 65556519 == 3P6 3D5 4D1 15 2P 2P/ 1 2D 3P/ 312 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 3D/ 313 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 1P/ 314 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 1F/ 315 65556519 == 3P6 3D5 4D1 15 2P 2P/ 1 2D 1D/ 316 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 3F/ 317 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 3P/ 318 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 1G/ 319 65556519 == 3P6 3D5 4D1 * 12 2D 2D/ 1 2D 1D/ 320 65556519 == 3P6 3D5 4D1 12 2D 2D/ 1 2D 1S/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 Map to LS levels : 1 1 1 1 1 2 2 2 3 4 4 4 3 5 3 5 5 6 7 7 7 8 9 10 11 13 13 12 12 12 13 14 15 16 17 18 19 19 19 19 19 20 20 20 21 21 21 22 22 22 22 22 23 23 23 24 24 25 24 25 25 26 27 27 28 28 28 28 28 30 29 27 30 31 31 32 31 30 33 34 32 33 32 33 35 36 37 37 37 38 39 40 43 41 41 41 42 43 45 44 44 44 45 43 46 45 43 49 47 43 47 47 48 49 51 54 50 53 50 50 51 49 63 51 52 54 55 53 58 51 54 56 56 56 53 51 54 55 57 55 59 58 60 60 60 60 60 62 62 61 58 61 70 66 62 66 66 62 64 65 65 65 62 76 65 61 67 66 68 66 69 68 65 68 76 69 54 69 72 71 73 71 73 71 73 71 70 73 72 74 74 74 70 71 73 75 75 80 79 72 75 77 80 78 82 79 84 82 80 81 79 81 85 81 83 76 89 84 89 88 82 85 90 85 84 88 92 90 86 87 102 88 63 98 99 98 98 104 98 105 97 97 94 97 91 93 105 93 95 96 100 100 102 114 93 120 94 94 106 106 97 101 97 103 89 103 103 103 103 90 99 92 99 108 92 147 108 100 107 113 110 109 109 109 110 111 110 98 112 108 113 104 104 102 115 116 104 117 117 104 118 117 118 121 106 119 121 114 118 128 122 130 113 121 125 123 105 124 125 127 129 126 125 63 127 114 127 120 129 128 128 120 131 129 132 133 130 134 130 135 135 136 137 136 137 156 135 136 137 138 139 139 139 143 156 140 146 141 144 142 144 149 145 143 150 143 154 148 144 146 146 149 149 150 151 152 153 160 150 155 154 158 157 158 158 160 161 161 159 154 161 162 163 160 164 156 147 147 165 165 167 166 165 167 167 168 169 169 169 176 171 173 171 170 172 171 174 175 173 176 173 177 177 177 177 177 176 178 179 180 180 180 180 180 181 182 182 183 182 184 185 185 185 185 185 187 186 186 186 186 186 187 188 187 188 188 189 187 188 187 188 189 189 190 192 193 192 192 190 191 191 191 194 192 193 193 192 193 193 190 195 195 195 196 197 196 197 198 196 198 197 198 198 200 199 198 200 201 200 199 200 200 201 199 205 203 202 202 203 204 202 201 205 205 205 205 203 207 206 208 207 209 207 208 209 211 213 209 210 208 211 212 213 212 211 214 214 212 215 214 216 213 217 228 220 228 218 220 222 222 269 233 229 219 269 221 224 224 224 225 223 225 227 232 226 225 242 226 224 227 225 232 224 227 234 230 231 269 236 234 226 222 239 242 237 237 235 234 233 229 239 234 236 220 225 234 238 229 232 233 236 241 243 240 246 243 253 245 241 270 241 244 245 246 239 270 250 247 245 243 248 228 237 249 250 252 246 251 251 251 252 242 250 267 254 255 252 253 253 256 265 257 276 265 276 267 257 258 272 259 262 257 260 260 260 261 262 262 263 264 266 266 266 272 268 271 274 274 271 273 271 273 273 271 271 275 277 278 277 278 277 279 280 278 281 284 282 283 283 284 283 284 285 267 265 286 287 288 289 276 289 289 290 291 291 291 274 272 270 292 269 269 293 293 293 294 294 294 296 295 296 296 297 298 298 298 299 300 301 301 301 302 303 304 305 305 305 306 307 307 308 307 309 310 310 311 310 311 311 312 312 312 314 313 315 316 316 317 316 317 317 318 319 320 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#ge32-08_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 75 95 75 75 75 Parity 1 Parity 2 Allowed 61978 35827 63403 initially 14367 8130 18672 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 27/02/06 --------------------------------------------------------------------------------