ls#ge9.dat
Resolved Specific Ion Data Collections
- Ion
- Ge9+
- Temperature Range
- 1.723 eV → 1.896 x 104 eV
ADF04
- Filename
- ls#ge9.dat
- Full Path
- adf04/copmm#32/ls#ge9.dat
Download data
- Spontaneous Emission: Ge+9(i) → Ge+9(j) + hv
- Electron Impact Excitation: Ge+9(i) + e → Ge+9(j) + e
| 65556 6S2.5 | 0.0 cm-1 |
| 65556 4G17.5 | 48169.0 cm-1 |
| 65556 4P5.5 | 54102.0 cm-1 |
| 65556 4D9.5 | 60660.0 cm-1 |
| 65556 2I12.5 | 68936.0 cm-1 |
| 65556 2D4.5 | 75783.5 cm-1 |
| 65556 4F13.5 | 81008.0 cm-1 |
| 65556 2F6.5 | 82238.7 cm-1 |
| 65556 2H10.5 | 85448.3 cm-1 |
| 65556 2G8.5 | 89218.2 cm-1 |
| 65556 2F6.5 | 94522.0 cm-1 |
| 65556 2S0.5 | 103929.0 cm-1 |
| 65556 2D4.5 | 115325.0 cm-1 |
| 65556 2G8.5 | 126700.0 cm-1 |
| 65556 2P2.5 | 154251.0 cm-1 |
| 65556 2D4.5 | 167282.0 cm-1 |
| 24555566 6F20.5 | 716848.0 cm-1 |
| 24555566 6D14.5 | 732578.0 cm-1 |
| 24555566 4P5.5 | 744278.0 cm-1 |
| 24555566 4F13.5 | 755918.0 cm-1 |
| 24555566 4H21.5 | 759718.0 cm-1 |
| 24555566 4G17.5 | 762688.0 cm-1 |
| 65546517 6D14.5 | 765878.0 cm-1 |
| 24555566 4I25.5 | 771838.0 cm-1 |
| 24555566 4D9.5 | 772858.0 cm-1 |
| 65546517 4D9.5 | 778388.0 cm-1 |
| 24555566 6P8.5 | 783558.0 cm-1 |
| 24555566 2P2.5 | 785878.0 cm-1 |
| 24555566 4H21.5 | 790168.0 cm-1 |
| 24555566 4F13.5 | 790188.0 cm-1 |
| 24555566 2H10.5 | 791068.0 cm-1 |
| 24555566 2S0.5 | 797658.0 cm-1 |
| 65546517 4H21.5 | 801018.0 cm-1 |
| 24555566 2G8.5 | 803048.0 cm-1 |
| 24555566 4D9.5 | 803588.0 cm-1 |
| 24555566 2F6.5 | 804088.0 cm-1 |
| 65546517 4F13.5 | 805298.0 cm-1 |
| 65546517 4P5.5 | 805498.0 cm-1 |
| 24555566 2G8.5 | 808138.0 cm-1 |
| 65546517 2H10.5 | 808698.0 cm-1 |
| 24555566 2I12.5 | 809178.0 cm-1 |
| 24555566 2P2.5 | 811398.0 cm-1 |
| 65546517 4G17.5 | 811408.0 cm-1 |
| 24555566 2D4.5 | 813008.0 cm-1 |
| 65546517 2F6.5 | 813448.0 cm-1 |
| 65546517 2P2.5 | 813568.0 cm-1 |
| 24555566 2J14.5 | 814458.0 cm-1 |
| 24555566 4G17.5 | 815078.0 cm-1 |
| 65546517 2G8.5 | 818768.0 cm-1 |
| 24555566 2P2.5 | 821438.0 cm-1 |
| 65546517 2I12.5 | 821518.0 cm-1 |
| 65546517 4D9.5 | 822088.0 cm-1 |
| 24555566 4P5.5 | 825278.0 cm-1 |
| 65546517 2G8.5 | 826168.0 cm-1 |
| 24555566 4D9.5 | 827068.0 cm-1 |
| 65546517 2D4.5 | 829198.0 cm-1 |
| 65546517 2S0.5 | 833688.0 cm-1 |
| 24555566 4F13.5 | 835408.0 cm-1 |
| 24555566 4P5.5 | 835578.0 cm-1 |
| 65546517 2D4.5 | 837508.0 cm-1 |
| 24555566 2G8.5 | 837768.0 cm-1 |
| 24555566 4S1.5 | 843068.0 cm-1 |
| 24555566 4D9.5 | 844888.0 cm-1 |
| 65546517 2F6.5 | 846098.0 cm-1 |
| 24555566 2F6.5 | 850118.0 cm-1 |
| 24555566 2F6.5 | 852628.0 cm-1 |
| 24555566 2F6.5 | 854528.0 cm-1 |
| 24555566 4G17.5 | 856798.0 cm-1 |
| 65546517 4F13.5 | 857738.0 cm-1 |
| 65546517 4P5.5 | 858348.0 cm-1 |
| 24555566 2D4.5 | 858528.0 cm-1 |
| 24555566 2G8.5 | 861268.0 cm-1 |
| 24555566 4D9.5 | 864778.0 cm-1 |
| 65546517 2F6.5 | 864948.0 cm-1 |
| 24555566 4F13.5 | 866058.0 cm-1 |
| 65546517 2P2.5 | 866248.0 cm-1 |
| 24555566 4G17.5 | 871768.0 cm-1 |
| 65546517 2G8.5 | 872108.0 cm-1 |
| 24555566 2F6.5 | 876808.0 cm-1 |
| 24555566 2G8.5 | 877318.0 cm-1 |
| 24555566 2P2.5 | 877368.0 cm-1 |
| 24555566 2H10.5 | 879058.0 cm-1 |
| 24555566 2D4.5 | 880038.0 cm-1 |
| 24555566 2H10.5 | 880148.0 cm-1 |
| 24555566 2I12.5 | 880728.0 cm-1 |
| 24555566 4S1.5 | 886188.0 cm-1 |
| 24555566 2F6.5 | 896968.0 cm-1 |
| 24555566 2F6.5 | 897488.0 cm-1 |
| 24555566 4P5.5 | 901908.0 cm-1 |
| 65546518 6F20.5 | 904538.0 cm-1 |
| 65546518 6P8.5 | 905988.0 cm-1 |
| 65546517 2D4.5 | 906568.0 cm-1 |
| 24555566 2F6.5 | 908198.0 cm-1 |
| 65546518 6D14.5 | 910358.0 cm-1 |
| 65546518 4P5.5 | 912658.0 cm-1 |
| 24555566 2H10.5 | 912778.0 cm-1 |
| 65546518 4F13.5 | 916258.0 cm-1 |
| 24555566 2D4.5 | 917828.0 cm-1 |
| 24555566 2G8.5 | 921268.0 cm-1 |
| 24555566 2F6.5 | 925198.0 cm-1 |
| 65546518 4D9.5 | 927538.0 cm-1 |
| 24555566 4F13.5 | 930848.0 cm-1 |
| 65546518 4H21.5 | 935278.0 cm-1 |
| 24555566 2D4.5 | 935538.0 cm-1 |
| 65546518 2G8.5 | 943038.0 cm-1 |
| 65546518 4I25.5 | 943048.0 cm-1 |
| 65546518 4G17.5 | 943578.0 cm-1 |
| 65546518 4D9.5 | 945388.0 cm-1 |
| 65546518 2H10.5 | 946378.0 cm-1 |
| 65546518 4G17.5 | 946708.0 cm-1 |
| 65546517 2S0.5 | 946778.0 cm-1 |
| 65546518 4P5.5 | 947398.0 cm-1 |
| 65546518 2I12.5 | 947878.0 cm-1 |
| 24555566 4D9.5 | 948068.0 cm-1 |
| 65546518 2D4.5 | 948568.0 cm-1 |
| 65546518 2S0.5 | 949078.0 cm-1 |
| 65546518 4D9.5 | 950148.0 cm-1 |
| 65546518 4F13.5 | 951158.0 cm-1 |
| 24555566 2D4.5 | 951188.0 cm-1 |
| 65546518 4H21.5 | 952798.0 cm-1 |
| 65546518 4S1.5 | 953178.0 cm-1 |
| 65546518 4F13.5 | 953368.0 cm-1 |
| 65546518 2F6.5 | 955398.0 cm-1 |
| 65546518 2D4.5 | 955428.0 cm-1 |
| 65546518 2H10.5 | 956358.0 cm-1 |
| 65546518 2G8.5 | 957088.0 cm-1 |
| 65546518 2F6.5 | 957598.0 cm-1 |
| 65546518 2P2.5 | 957648.0 cm-1 |
| 65546518 4G17.5 | 959068.0 cm-1 |
| 65546518 2H10.5 | 959838.0 cm-1 |
| 65546518 2I12.5 | 960678.0 cm-1 |
| 65546518 2J14.5 | 961898.0 cm-1 |
| 65546518 4D9.5 | 962898.0 cm-1 |
| 24555566 2P2.5 | 963628.0 cm-1 |
| 65546518 2G8.5 | 964458.0 cm-1 |
| 65546518 4P5.5 | 964808.0 cm-1 |
| 24555566 2G8.5 | 966248.0 cm-1 |
| 65546518 4F13.5 | 967968.0 cm-1 |
| 24555566 2P2.5 | 968098.0 cm-1 |
| 65546518 2F6.5 | 969138.0 cm-1 |
| 65546518 2P2.5 | 969628.0 cm-1 |
| 65546518 2H10.5 | 971108.0 cm-1 |
| 65546518 2F6.5 | 974318.0 cm-1 |
| 24555566 2S0.5 | 975028.0 cm-1 |
| 65546518 2D4.5 | 975448.0 cm-1 |
| 65546518 2D4.5 | 979158.0 cm-1 |
| 65546518 2P2.5 | 979958.0 cm-1 |
| 65546518 2F6.5 | 981428.0 cm-1 |
| 65546518 2F6.5 | 983168.0 cm-1 |
| 24555566 2H10.5 | 984778.0 cm-1 |
| 24555566 2D4.5 | 985798.0 cm-1 |
| 65546518 2P2.5 | 987028.0 cm-1 |
| 65546518 2G8.5 | 991108.0 cm-1 |
| 65546518 2G8.5 | 992038.0 cm-1 |
| 65546518 2D4.5 | 994028.0 cm-1 |
| 65546518 4F13.5 | 995648.0 cm-1 |
| 65546518 4P5.5 | 998848.0 cm-1 |
| 65546518 2F6.5 | 999468.0 cm-1 |
| 65546518 4D9.5 | 1000430.0 cm-1 |
| 65546518 4G17.5 | 1001870.0 cm-1 |
| 65546518 2D4.5 | 1005480.0 cm-1 |
| 65546518 4S1.5 | 1010050.0 cm-1 |
| 24555566 2D4.5 | 1010390.0 cm-1 |
| 65546518 4D9.5 | 1010950.0 cm-1 |
| 65546518 2G8.5 | 1012480.0 cm-1 |
| 65546518 2P2.5 | 1012860.0 cm-1 |
| 65546518 2H10.5 | 1014700.0 cm-1 |
| 65546518 2G8.5 | 1018280.0 cm-1 |
| 65546518 2S0.5 | 1019280.0 cm-1 |
| 65546518 2D4.5 | 1023710.0 cm-1 |
| 65546518 2F6.5 | 1025580.0 cm-1 |
| 24555566 2P2.5 | 1038450.0 cm-1 |
| 65546518 2P2.5 | 1042560.0 cm-1 |
| 65546518 2F6.5 | 1051480.0 cm-1 |
| 65546518 2D4.5 | 1058020.0 cm-1 |
| 65546518 2P2.5 | 1094110.0 cm-1 |
| 65546519 4S1.5 | 1113210.0 cm-1 |
| 65546519 6P8.5 | 1117410.0 cm-1 |
| 65546519 6G26.5 | 1118110.0 cm-1 |
| 65546519 6D14.5 | 1124010.0 cm-1 |
| 65546519 6F20.5 | 1124210.0 cm-1 |
| 65546519 4G17.5 | 1129710.0 cm-1 |
| 65546519 4P5.5 | 1130010.0 cm-1 |
| 65546519 4D9.5 | 1133010.0 cm-1 |
| 65546519 4F13.5 | 1137710.0 cm-1 |
| 65546519 4I25.5 | 1151110.0 cm-1 |
| 65546519 2G8.5 | 1153210.0 cm-1 |
| 65546519 4H21.5 | 1153710.0 cm-1 |
| 65546519 4J29.5 | 1155910.0 cm-1 |
| 65546519 2P2.5 | 1156010.0 cm-1 |
| 65546519 4F13.5 | 1157110.0 cm-1 |
| 65546519 4H21.5 | 1158810.0 cm-1 |
| 65546519 2J14.5 | 1159710.0 cm-1 |
| 65546519 4G17.5 | 1160310.0 cm-1 |
| 65546519 2I12.5 | 1160310.0 cm-1 |
| 65546519 2H10.5 | 1160710.0 cm-1 |
| 65546519 6S2.5 | 1162310.0 cm-1 |
| 65546519 2F6.5 | 1162410.0 cm-1 |
| 65546519 4G17.5 | 1162810.0 cm-1 |
| 65546519 2D4.5 | 1163410.0 cm-1 |
| 65546519 4F13.5 | 1164310.0 cm-1 |
| 65546519 4I25.5 | 1165510.0 cm-1 |
| 65546519 2F6.5 | 1165810.0 cm-1 |
| 65546519 2D4.5 | 1166510.0 cm-1 |
| 65546519 4H21.5 | 1166810.0 cm-1 |
| 65546519 2G8.5 | 1167110.0 cm-1 |
| 65546519 2P2.5 | 1169210.0 cm-1 |
| 65546519 2D4.5 | 1169310.0 cm-1 |
| 65546519 2F6.5 | 1169310.0 cm-1 |
| 65546519 4P5.5 | 1169510.0 cm-1 |
| 65546519 2I12.5 | 1170310.0 cm-1 |
| 65546519 2H10.5 | 1170910.0 cm-1 |
| 65546519 4D9.5 | 1171910.0 cm-1 |
| 65546519 2J14.5 | 1173010.0 cm-1 |
| 65546519 2F6.5 | 1173010.0 cm-1 |
| 65546519 4F13.5 | 1173310.0 cm-1 |
| 65546519 4D9.5 | 1173510.0 cm-1 |
| 65546519 4S1.5 | 1175310.0 cm-1 |
| 65546519 2K16.5 | 1176010.0 cm-1 |
| 65546519 2G8.5 | 1177010.0 cm-1 |
| 65546519 4P5.5 | 1177610.0 cm-1 |
| 65546519 4G17.5 | 1178110.0 cm-1 |
| 65546519 2I12.5 | 1178310.0 cm-1 |
| 65546519 4F13.5 | 1178410.0 cm-1 |
| 65546519 2H10.5 | 1178710.0 cm-1 |
| 65546519 2G8.5 | 1178910.0 cm-1 |
| 65546519 2D4.5 | 1178910.0 cm-1 |
| 65546519 4D9.5 | 1180810.0 cm-1 |
| 65546519 2G8.5 | 1180910.0 cm-1 |
| 65546519 2F6.5 | 1181410.0 cm-1 |
| 65546519 2P2.5 | 1183610.0 cm-1 |
| 65546519 4F13.5 | 1184310.0 cm-1 |
| 65546519 2G8.5 | 1186210.0 cm-1 |
| 65546519 2H10.5 | 1186510.0 cm-1 |
| 65546519 2S0.5 | 1186610.0 cm-1 |
| 65546519 2D4.5 | 1187310.0 cm-1 |
| 65546519 2H10.5 | 1190010.0 cm-1 |
| 65546519 2F6.5 | 1192710.0 cm-1 |
| 65546519 2P2.5 | 1193210.0 cm-1 |
| 65546519 2D4.5 | 1194210.0 cm-1 |
| 65546519 2F6.5 | 1194810.0 cm-1 |
| 65546519 2G8.5 | 1194910.0 cm-1 |
| 65546519 4P5.5 | 1195710.0 cm-1 |
| 65546519 4G17.5 | 1196610.0 cm-1 |
| 65546519 2H10.5 | 1199510.0 cm-1 |
| 65546519 4D9.5 | 1199710.0 cm-1 |
| 65546519 2F6.5 | 1206710.0 cm-1 |
| 65546519 2D4.5 | 1208010.0 cm-1 |
| 65546519 2G8.5 | 1208210.0 cm-1 |
| 65546519 2P2.5 | 1208710.0 cm-1 |
| 65546519 2D4.5 | 1209510.0 cm-1 |
| 65546519 4G17.5 | 1211710.0 cm-1 |
| 65546519 2G8.5 | 1211810.0 cm-1 |
| 65546519 2I12.5 | 1213410.0 cm-1 |
| 65546519 4P5.5 | 1214110.0 cm-1 |
| 65546519 4D9.5 | 1215410.0 cm-1 |
| 65546519 4H21.5 | 1216010.0 cm-1 |
| 65546519 4D9.5 | 1218810.0 cm-1 |
| 65546519 2F6.5 | 1219010.0 cm-1 |
| 65546519 4F13.5 | 1219410.0 cm-1 |
| 65546519 2D4.5 | 1222610.0 cm-1 |
| 65546519 2H10.5 | 1222910.0 cm-1 |
| 65546519 2P2.5 | 1223610.0 cm-1 |
| 65546519 2I12.5 | 1228710.0 cm-1 |
| 65546519 4P5.5 | 1228910.0 cm-1 |
| 65546519 2F6.5 | 1230210.0 cm-1 |
| 65546519 2S0.5 | 1232010.0 cm-1 |
| 65546519 4F13.5 | 1235710.0 cm-1 |
| 65546519 2D4.5 | 1236710.0 cm-1 |
| 65546519 2H10.5 | 1239010.0 cm-1 |
| 65546519 2P2.5 | 1239110.0 cm-1 |
| 65546519 2F6.5 | 1240710.0 cm-1 |
| 65546519 2G8.5 | 1251110.0 cm-1 |
| 65546519 2S0.5 | 1261710.0 cm-1 |
| 65546519 2D4.5 | 1261810.0 cm-1 |
| 65546519 2F6.5 | 1268410.0 cm-1 |
| 65546519 2G8.5 | 1271110.0 cm-1 |
| 65546519 2D4.5 | 1285510.0 cm-1 |
| 65546519 2P2.5 | 1288110.0 cm-1 |
| 65546519 2D4.5 | 1311410.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 65556 == 3P6 3D5 1 6S 6S/ 2 65556 == 3P6 3D5 2 4G 4G/ 3 65556 == 3P6 3D5 5 4P 4P/ 4 65556 == 3P6 3D5 4 4D 4D/ 5 65556 == 3P6 3D5 6 2I 2I/ 6 65556 == 3P6 3D5 14 2D 2D/ 7 65556 == 3P6 3D5 3 4F 4F/ 8 65556 == 3P6 3D5 10 2F 2F/ 9 65556 == 3P6 3D5 7 2H 2H/ 10 65556 == 3P6 3D5 9 2G 2G/ 11 65556 == 3P6 3D5 11 2F 2F/ 12 65556 == 3P6 3D5 16 2S 2S/ 13 65556 == 3P6 3D5 13 2D 2D/ 14 65556 == 3P6 3D5 8 2G 2G/ 15 65556 == 3P6 3D5 15 2P 2P/ 16 65556 == 3P6 3D5 12 2D 2D/ 17 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 6F/ 18 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 6D/ 19 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 8 3P 4P/ 20 24555566 == 3S2 3P5 3D6 1 2P 2P/ 5 3F 4F/ 21 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 4H/ 22 24555566 == 3S2 3P5 3D6 1 2P 2P/ 5 3F 4G/ 23 65546517 == 3P6 3D4 4S1 1 5D 5D/ 1 2S 6D/ 24 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 4I/ 25 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 4D/ 26 65546517 == 3P6 3D4 4S1 1 5D 5D/ 1 2S 4D/ 27 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 6P/ 28 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 8 3P 2P/ 29 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 4H/ 30 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 4F/ 31 24555566 == 3S2 3P5 3D6 1 2P 2P/11 1G 2H/ 32 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 2S/ 33 65546517 == 3P6 3D4 4S1 2 3H 3H/ 1 2S 4H/ 34 24555566 == 3S2 3P5 3D6 1 2P 2P/10 1G 2G/ 35 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 4D/ 36 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 2F/ 37 65546517 == 3P6 3D4 4S1 5 3F 3F/ 1 2S 4F/ 38 65546517 == 3P6 3D4 4S1 8 3P 3P/ 1 2S 4P/ 39 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 5 3F 2G/ 40 65546517 == 3P6 3D4 4S1 2 3H 3H/ 1 2S 2H/ 41 24555566 == 3S2 3P5 3D6 1 2P 2P/ 9 1I 2I/ 42 24555566 == 3S2 3P5 3D6 * 1 2P 2P/16 1S 2P/ 43 65546517 == 3P6 3D4 4S1 3 3G 3G/ 1 2S 4G/ 44 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 5 3F 2D/ 45 65546517 == 3P6 3D4 4S1 5 3F 3F/ 1 2S 2F/ 46 65546517 == 3P6 3D4 4S1 8 3P 3P/ 1 2S 2P/ 47 24555566 == 3S2 3P5 3D6 1 2P 2P/ 9 1I 2K/ 48 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 4G/ 49 65546517 == 3P6 3D4 4S1 3 3G 3G/ 1 2S 2G/ 50 24555566 == 3S2 3P5 3D6 * 1 2P 2P/14 1D 2P/ 51 65546517 == 3P6 3D4 4S1 9 1I 1I/ 1 2S 2I/ 52 65546517 == 3P6 3D4 4S1 6 3D 3D/ 1 2S 4D/ 53 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 4P/ 54 65546517 == 3P6 3D4 4S1 11 1G 1G/ 1 2S 2G/ 55 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 7 3P 4D/ 56 65546517 == 3P6 3D4 4S1 6 3D 3D/ 1 2S 2D/ 57 65546517 == 3P6 3D4 4S1 16 1S 1S/ 1 2S 2S/ 58 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 4F/ 59 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 4P/ 60 65546517 == 3P6 3D4 4S1 14 1D 1D/ 1 2S 2D/ 61 24555566 == 3S2 3P5 3D6 1 2P 2P/11 1G 2G/ 62 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 4S/ 63 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 4D/ 64 65546517 == 3P6 3D4 4S1 12 1F 1F/ 1 2S 2F/ 65 24555566 == 3S2 3P5 3D6 1 2P 2P/12 1F 2F/ 66 24555566 == 3S2 3P5 3D6 1 2P 2P/10 1G 2F/ 67 24555566 == 3S2 3P5 3D6 * 1 2P 2P/14 1D 2F/ 68 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 4G/ 69 65546517 == 3P6 3D4 4S1 4 3F 3F/ 1 2S 4F/ 70 65546517 == 3P6 3D4 4S1 7 3P 3P/ 1 2S 4P/ 71 24555566 == 3S2 3P5 3D6 * 1 2P 2P/12 1F 2D/ 72 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 2 3H 2G/ 73 24555566 == 3S2 3P5 3D6 1 2P 2P/ 5 3F 4D/ 74 65546517 == 3P6 3D4 4S1 4 3F 3F/ 1 2S 2F/ 75 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 4F/ 76 65546517 == 3P6 3D4 4S1 7 3P 3P/ 1 2S 2P/ 77 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 4G/ 78 65546517 == 3P6 3D4 4S1 10 1G 1G/ 1 2S 2G/ 79 24555566 == 3S2 3P5 3D6 1 2P 2P/ 5 3F 2F/ 80 24555566 == 3S2 3P5 3D6 1 2P 2P/12 1F 2G/ 81 24555566 == 3S2 3P5 3D6 1 2P 2P/13 1D 2P/ 82 24555566 == 3S2 3P5 3D6 1 2P 2P/10 1G 2H/ 83 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 2D/ 84 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 3 3G 2H/ 85 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 2I/ 86 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 4S/ 87 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 4 3F 2F/ 88 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 2F/ 89 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 4P/ 90 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 6F/ 91 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 6P/ 92 65546517 == 3P6 3D4 4S1 13 1D 1D/ 1 2S 2D/ 93 24555566 == 3S2 3P5 3D6 1 2P 2P/11 1G 2F/ 94 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 6D/ 95 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 4P/ 96 24555566 == 3S2 3P5 3D6 1 2P 2P/ 9 1I 2H/ 97 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 4F/ 98 24555566 == 3S2 3P5 3D6 1 2P 2P/14 1D 2D/ 99 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 4 3F 2G/ 100 24555566 == 3S2 3P5 3D6 * 1 2P 2P/13 1D 2F/ 101 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 4D/ 102 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 4F/ 103 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 4H/ 104 24555566 == 3S2 3P5 3D6 1 2P 2P/13 1D 2D/ 105 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 2G/ 106 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 4I/ 107 65546518 == 3P6 3D4 4P1 * 2 3H 3H/ 1 2P 4G/ 108 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 4D/ 109 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 2H/ 110 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 4G/ 111 65546517 == 3P6 3D4 4S1 15 1S 1S/ 1 2S 2S/ 112 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 4P/ 113 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 2I/ 114 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 4D/ 115 65546518 == 3P6 3D4 4P1 * 5 3F 3F/ 1 2P 2D/ 116 65546518 == 3P6 3D4 4P1 * 7 3P 3P/ 1 2P 2S/ 117 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 4D/ 118 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 4F/ 119 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 2D/ 120 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 4H/ 121 65546518 == 3P6 3D4 4P1 * 8 3P 3P/ 1 2P 4S/ 122 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 4F/ 123 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 2F/ 124 65546518 == 3P6 3D4 4P1 * 8 3P 3P/ 1 2P 2D/ 125 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 2H/ 126 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 2G/ 127 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 2F/ 128 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 2P/ 129 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 4G/ 130 65546518 == 3P6 3D4 4P1 * 11 1G 1G/ 1 2P 2H/ 131 65546518 == 3P6 3D4 4P1 9 1I 1I/ 1 2P 2I/ 132 65546518 == 3P6 3D4 4P1 9 1I 1I/ 1 2P 2K/ 133 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 4D/ 134 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 2P/ 135 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 2G/ 136 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 4P/ 137 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 3 3G 2G/ 138 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 4F/ 139 24555566 == 3S2 3P5 3D6 1 2P 2P/15 1S 2P/ 140 65546518 == 3P6 3D4 4P1 11 1G 1G/ 1 2P 2F/ 141 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 2P/ 142 65546518 == 3P6 3D4 4P1 9 1I 1I/ 1 2P 2H/ 143 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 2F/ 144 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 2S/ 145 65546518 == 3P6 3D4 4P1 14 1D 1D/ 1 2P 2D/ 146 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 2D/ 147 65546518 == 3P6 3D4 4P1 16 1S 1S/ 1 2P 2P/ 148 65546518 == 3P6 3D4 4P1 12 1F 1F/ 1 2P 2F/ 149 65546518 == 3P6 3D4 4P1 14 1D 1D/ 1 2P 2F/ 150 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 2H/ 151 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 2D/ 152 65546518 == 3P6 3D4 4P1 14 1D 1D/ 1 2P 2P/ 153 65546518 == 3P6 3D4 4P1 12 1F 1F/ 1 2P 2G/ 154 65546518 == 3P6 3D4 4P1 * 11 1G 1G/ 1 2P 2G/ 155 65546518 == 3P6 3D4 4P1 12 1F 1F/ 1 2P 2D/ 156 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 4F/ 157 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 4P/ 158 65546518 == 3P6 3D4 4P1 * 4 3F 3F/ 1 2P 2F/ 159 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 4D/ 160 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 4G/ 161 65546518 == 3P6 3D4 4P1 * 7 3P 3P/ 1 2P 2D/ 162 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 4S/ 163 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 2D/ 164 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 4D/ 165 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 2G/ 166 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 2P/ 167 65546518 == 3P6 3D4 4P1 10 1G 1G/ 1 2P 2H/ 168 65546518 == 3P6 3D4 4P1 10 1G 1G/ 1 2P 2G/ 169 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 2S/ 170 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 2D/ 171 65546518 == 3P6 3D4 4P1 10 1G 1G/ 1 2P 2F/ 172 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 2P/ 173 65546518 == 3P6 3D4 4P1 13 1D 1D/ 1 2P 2P/ 174 65546518 == 3P6 3D4 4P1 13 1D 1D/ 1 2P 2F/ 175 65546518 == 3P6 3D4 4P1 13 1D 1D/ 1 2P 2D/ 176 65546518 == 3P6 3D4 4P1 15 1S 1S/ 1 2P 2P/ 177 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4S/ 178 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6P/ 179 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6G/ 180 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6D/ 181 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6F/ 182 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4G/ 183 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4P/ 184 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4D/ 185 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4F/ 186 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4I/ 187 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2G/ 188 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4H/ 189 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4K/ 190 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 2P/ 191 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 4F/ 192 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4H/ 193 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2K/ 194 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4G/ 195 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2I/ 196 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2H/ 197 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6S/ 198 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2F/ 199 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4G/ 200 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 2D/ 201 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4F/ 202 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4I/ 203 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 2F/ 204 65546519 == 3P6 3D4 4D1 * 8 3P 3P/ 1 2D 2D/ 205 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4H/ 206 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 2G/ 207 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 2P/ 208 65546519 == 3P6 3D4 4D1 * 5 3F 3F/ 1 2D 2D/ 209 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 2F/ 210 65546519 == 3P6 3D4 4D1 * 8 3P 3P/ 1 2D 4P/ 211 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 2I/ 212 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 2H/ 213 65546519 == 3P6 3D4 4D1 * 5 3F 3F/ 1 2D 4D/ 214 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2K/ 215 65546519 == 3P6 3D4 4D1 * 8 3P 3P/ 1 2D 2F/ 216 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4F/ 217 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4D/ 218 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4S/ 219 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2L/ 220 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 2G/ 221 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4P/ 222 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4G/ 223 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2I/ 224 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4F/ 225 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2H/ 226 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2G/ 227 65546519 == 3P6 3D4 4D1 * 16 1S 1S/ 1 2D 2D/ 228 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4D/ 229 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2G/ 230 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2F/ 231 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2P/ 232 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 4F/ 233 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2G/ 234 65546519 == 3P6 3D4 4D1 * 5 3F 3F/ 1 2D 2H/ 235 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2S/ 236 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2D/ 237 65546519 == 3P6 3D4 4D1 * 9 1I 1I/ 1 2D 2H/ 238 65546519 == 3P6 3D4 4D1 14 1D 1D/ 1 2D 2F/ 239 65546519 == 3P6 3D4 4D1 14 1D 1D/ 1 2D 2P/ 240 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2D/ 241 65546519 == 3P6 3D4 4D1 * 12 1F 1F/ 1 2D 2F/ 242 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2G/ 243 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4P/ 244 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4G/ 245 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2H/ 246 65546519 == 3P6 3D4 4D1 * 7 3P 3P/ 1 2D 4D/ 247 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2F/ 248 65546519 == 3P6 3D4 4D1 * 11 1G 1G/ 1 2D 2D/ 249 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2G/ 250 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2P/ 251 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 2D/ 252 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4G/ 253 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2G/ 254 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2I/ 255 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 4P/ 256 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4D/ 257 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4H/ 258 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 4D/ 259 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2F/ 260 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 4F/ 261 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2D/ 262 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2H/ 263 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2P/ 264 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2I/ 265 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4P/ 266 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 2F/ 267 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2S/ 268 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4F/ 269 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2D/ 270 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2H/ 271 65546519 == 3P6 3D4 4D1 * 7 3P 3P/ 1 2D 2P/ 272 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2F/ 273 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2G/ 274 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2S/ 275 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2D/ 276 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2F/ 277 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2G/ 278 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2D/ 279 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2P/ 280 65546519 == 3P6 3D4 4D1 15 1S 1S/ 1 2D 2D/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 Map to LS levels : 1 2 2 2 2 3 3 3 4 4 4 4 5 5 6 6 8 7 7 7 7 9 8 9 10 10 11 11 12 13 13 14 14 15 15 16 16 17 17 17 17 18 18 18 19 18 17 17 18 21 21 20 21 20 19 22 20 20 35 19 24 29 23 55 23 22 23 23 22 28 23 25 25 24 22 67 26 50 25 26 27 24 26 30 44 26 25 27 35 24 36 72 31 39 27 29 30 35 28 29 31 30 32 47 33 38 33 34 33 33 42 38 37 37 37 37 30 41 48 34 29 40 79 43 38 46 40 43 43 21 41 45 43 45 46 83 49 36 48 48 49 53 48 84 51 52 51 52 52 52 53 71 39 59 54 54 42 56 61 58 56 77 63 47 58 57 59 58 77 73 73 87 60 60 59 55 53 62 58 65 61 64 64 63 68 66 63 66 68 63 70 68 69 65 69 69 69 100 70 75 68 70 77 44 75 74 76 74 75 80 76 82 73 78 78 55 55 81 85 75 35 81 73 85 86 80 82 88 89 90 90 90 93 95 94 90 88 96 91 89 90 91 92 92 91 94 94 71 90 94 94 97 50 97 93 95 89 98 95 99 97 97 96 83 98 101 102 99 102 101 101 79 101 102 103 103 108 104 102 103 104 103 108 106 110 105 106 107 112 108 87 107 119 109 106 117 115 107 105 107 106 112 110 111 110 114 113 109 114 114 118 113 124 116 120 123 114 120 112 110 115 84 118 118 117 118 117 122 122 120 121 127 122 126 122 72 108 119 130 125 117 128 120 125 129 131 129 132 128 129 124 123 126 139 129 127 133 133 136 67 134 130 137 133 131 133 135 135 138 132 134 138 136 138 137 140 138 141 136 140 142 141 142 143 145 143 144 147 145 148 154 146 146 147 149 149 139 151 150 150 77 152 152 148 151 153 155 153 156 156 156 157 156 160 158 159 157 155 159 157 159 158 159 160 160 160 161 161 163 164 162 154 167 165 164 166 164 164 165 163 100 166 168 167 168 169 170 171 170 171 172 172 173 173 174 174 175 175 176 176 177 179 179 179 178 178 179 178 179 181 179 181 181 180 181 180 180 180 180 181 181 182 182 183 182 183 183 184 182 184 184 184 185 185 185 185 186 186 220 191 186 187 191 188 188 186 189 188 213 188 189 190 187 192 224 224 189 241 224 232 192 189 190 195 191 193 213 194 199 192 196 194 213 194 192 210 193 198 199 194 243 196 204 191 200 197 195 202 201 201 198 199 228 205 201 210 202 199 203 228 228 201 200 202 237 203 234 205 206 209 206 205 202 205 207 208 211 204 212 208 216 207 216 209 211 227 212 216 217 215 217 214 214 215 217 217 226 229 218 219 219 221 223 222 222 222 221 225 222 223 221 225 249 233 230 248 230 231 227 226 231 229 216 235 236 232 236 232 232 238 239 242 238 239 233 240 240 244 244 244 244 242 220 246 246 245 245 246 246 210 243 243 247 247 250 251 250 237 253 251 234 252 252 252 252 254 253 255 255 254 255 256 257 257 256 256 256 257 259 257 260 228 258 258 258 258 260 260 260 262 261 259 263 261 241 263 262 248 213 265 264 265 266 264 265 249 267 266 224 268 269 268 268 268 269 271 270 270 271 272 272 273 273 275 274 275 276 276 277 277 278 278 279 279 280 280 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#ge32-09_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 75 95 75 75 75 Parity 1 Parity 2 Allowed 47935 45655 62306 initially 9289 8481 15846 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 27/02/06 --------------------------------------------------------------------------------