ls#mo16.dat
Resolved Specific Ion Data Collections
- Ion
- Mo16+
- Temperature Range
- 4.980 eV → 5.480 x 104 eV
ADF04
- Filename
- ls#mo16.dat
- Full Path
- adf04/copmm#42/ls#mo16.dat
Download data
- Spontaneous Emission: Mo+16(i) → Mo+16(j) + hv
- Electron Impact Excitation: Mo+16(i) + e → Mo+16(j) + e
| 65586 3F10.0 | 0.0 cm-1 |
| 65586 3P4.0 | 42166.0 cm-1 |
| 65586 1D2.0 | 60559.0 cm-1 |
| 65586 1G4.0 | 61915.0 cm-1 |
| 65586 1S0.0 | 151595.0 cm-1 |
| 24555596 1D2.0 | 1295440.0 cm-1 |
| 24555596 3F10.0 | 1331240.0 cm-1 |
| 24555596 3D7.0 | 1378840.0 cm-1 |
| 24555596 3P4.0 | 1429340.0 cm-1 |
| 24555596 1F3.0 | 1546340.0 cm-1 |
| 24555596 1P1.0 | 1566340.0 cm-1 |
| 65576517 5F17.0 | 2022540.0 cm-1 |
| 65576517 3F10.0 | 2042940.0 cm-1 |
| 65576517 1P1.0 | 2065940.0 cm-1 |
| 65576517 5P7.0 | 2066240.0 cm-1 |
| 65576517 3G13.0 | 2074140.0 cm-1 |
| 65576517 3P4.0 | 2086040.0 cm-1 |
| 65576517 1G4.0 | 2090140.0 cm-1 |
| 65576517 3H16.0 | 2095640.0 cm-1 |
| 65576517 3P4.0 | 2103240.0 cm-1 |
| 65576517 1D2.0 | 2104140.0 cm-1 |
| 65576517 1H5.0 | 2113340.0 cm-1 |
| 65576517 3D7.0 | 2117340.0 cm-1 |
| 65576517 3F10.0 | 2136840.0 cm-1 |
| 65576517 1F3.0 | 2148640.0 cm-1 |
| 65576517 3D7.0 | 2201340.0 cm-1 |
| 65576517 1D2.0 | 2212340.0 cm-1 |
| 65576518 5F17.0 | 2300240.0 cm-1 |
| 65576518 5G22.0 | 2302540.0 cm-1 |
| 65576518 3G13.0 | 2309040.0 cm-1 |
| 65576518 5D12.0 | 2309240.0 cm-1 |
| 65576518 5S2.0 | 2310940.0 cm-1 |
| 65576518 3F10.0 | 2325340.0 cm-1 |
| 65576518 3S1.0 | 2326740.0 cm-1 |
| 65576518 1G4.0 | 2327440.0 cm-1 |
| 65576518 3D7.0 | 2332540.0 cm-1 |
| 65576518 5D12.0 | 2339240.0 cm-1 |
| 65576518 3G13.0 | 2347040.0 cm-1 |
| 65576518 1D2.0 | 2348840.0 cm-1 |
| 65576518 1F3.0 | 2359440.0 cm-1 |
| 65576518 3I19.0 | 2359440.0 cm-1 |
| 65576518 3H16.0 | 2359440.0 cm-1 |
| 65576518 1F3.0 | 2361740.0 cm-1 |
| 65576518 1S0.0 | 2364440.0 cm-1 |
| 65576518 3F10.0 | 2364440.0 cm-1 |
| 65576518 1H5.0 | 2366240.0 cm-1 |
| 65576518 1P1.0 | 2366540.0 cm-1 |
| 65576518 3G13.0 | 2367740.0 cm-1 |
| 65576518 3P4.0 | 2368440.0 cm-1 |
| 65576518 3P4.0 | 2368740.0 cm-1 |
| 65576518 3F10.0 | 2369440.0 cm-1 |
| 65576518 3D7.0 | 2370640.0 cm-1 |
| 65576518 5P7.0 | 2376540.0 cm-1 |
| 65576518 3H16.0 | 2391340.0 cm-1 |
| 65576518 1G4.0 | 2393440.0 cm-1 |
| 65576518 3D7.0 | 2393940.0 cm-1 |
| 65576518 3P4.0 | 2395140.0 cm-1 |
| 65576518 1I6.0 | 2397740.0 cm-1 |
| 65576518 1D2.0 | 2399640.0 cm-1 |
| 65576518 1P1.0 | 2400240.0 cm-1 |
| 65576518 3D7.0 | 2405140.0 cm-1 |
| 65576518 1D2.0 | 2406440.0 cm-1 |
| 65576518 3S1.0 | 2410440.0 cm-1 |
| 65576518 1H5.0 | 2413440.0 cm-1 |
| 65576518 3G13.0 | 2416040.0 cm-1 |
| 65576518 3D7.0 | 2417640.0 cm-1 |
| 65576518 1G4.0 | 2427440.0 cm-1 |
| 65576518 3F10.0 | 2430540.0 cm-1 |
| 65576518 1F3.0 | 2448440.0 cm-1 |
| 65576518 3P4.0 | 2472640.0 cm-1 |
| 65576518 3F10.0 | 2476840.0 cm-1 |
| 65576518 1F3.0 | 2492140.0 cm-1 |
| 65576518 3D7.0 | 2498640.0 cm-1 |
| 65576518 1P1.0 | 2503040.0 cm-1 |
| 65576518 1D2.0 | 2508340.0 cm-1 |
| 65576519 5F17.0 | 2710340.0 cm-1 |
| 65576519 5P7.0 | 2721840.0 cm-1 |
| 65576519 5G22.0 | 2725440.0 cm-1 |
| 65576519 5H27.0 | 2730940.0 cm-1 |
| 65576519 3G13.0 | 2733740.0 cm-1 |
| 65576519 3D7.0 | 2735140.0 cm-1 |
| 65576519 3H16.0 | 2738040.0 cm-1 |
| 65576519 5D12.0 | 2740340.0 cm-1 |
| 65576519 3P4.0 | 2751040.0 cm-1 |
| 65576519 5P7.0 | 2754940.0 cm-1 |
| 65576519 5F17.0 | 2765940.0 cm-1 |
| 65576519 1H5.0 | 2766940.0 cm-1 |
| 65576519 3F10.0 | 2770040.0 cm-1 |
| 65576519 3I19.0 | 2771040.0 cm-1 |
| 65576519 3D7.0 | 2771240.0 cm-1 |
| 65576519 1F3.0 | 2771540.0 cm-1 |
| 65576519 3G13.0 | 2775940.0 cm-1 |
| 65576519 1F3.0 | 2777340.0 cm-1 |
| 65576519 1J7.0 | 2780640.0 cm-1 |
| 65576519 3F10.0 | 2783940.0 cm-1 |
| 65576519 3H16.0 | 2784040.0 cm-1 |
| 65576519 5D12.0 | 2785440.0 cm-1 |
| 65576519 3P4.0 | 2785740.0 cm-1 |
| 65576519 1D2.0 | 2786740.0 cm-1 |
| 65576519 3F10.0 | 2787940.0 cm-1 |
| 65576519 3G13.0 | 2789440.0 cm-1 |
| 65576519 1I6.0 | 2790440.0 cm-1 |
| 65576519 3D7.0 | 2790840.0 cm-1 |
| 65576519 3D7.0 | 2795940.0 cm-1 |
| 65576519 1D2.0 | 2796040.0 cm-1 |
| 65576519 3J22.0 | 2797940.0 cm-1 |
| 65576519 1F3.0 | 2798640.0 cm-1 |
| 65576519 1H5.0 | 2798740.0 cm-1 |
| 65576519 3I19.0 | 2801140.0 cm-1 |
| 65576519 1G4.0 | 2802540.0 cm-1 |
| 65576519 3G13.0 | 2802640.0 cm-1 |
| 65576519 3P4.0 | 2802840.0 cm-1 |
| 65576519 1P1.0 | 2805540.0 cm-1 |
| 65576519 1G4.0 | 2808640.0 cm-1 |
| 65576519 3S1.0 | 2809340.0 cm-1 |
| 65576519 3H16.0 | 2812440.0 cm-1 |
| 65576519 3F10.0 | 2821040.0 cm-1 |
| 65576519 1I6.0 | 2823840.0 cm-1 |
| 65576519 1P1.0 | 2825440.0 cm-1 |
| 65576519 1F3.0 | 2826940.0 cm-1 |
| 65576519 1S0.0 | 2829240.0 cm-1 |
| 65576519 3D7.0 | 2829340.0 cm-1 |
| 65576519 3F10.0 | 2836140.0 cm-1 |
| 65576519 1P1.0 | 2836940.0 cm-1 |
| 65576519 3F10.0 | 2840140.0 cm-1 |
| 65576519 3H16.0 | 2840940.0 cm-1 |
| 65576519 3F10.0 | 2841040.0 cm-1 |
| 65576519 3D7.0 | 2842140.0 cm-1 |
| 65576519 1H5.0 | 2844140.0 cm-1 |
| 65576519 3G13.0 | 2845840.0 cm-1 |
| 65576519 3P4.0 | 2852440.0 cm-1 |
| 65576519 1D2.0 | 2853940.0 cm-1 |
| 65576519 1F3.0 | 2855340.0 cm-1 |
| 65576519 1G4.0 | 2856440.0 cm-1 |
| 65576519 3S1.0 | 2877740.0 cm-1 |
| 65576519 3P4.0 | 2891440.0 cm-1 |
| 65576519 1P1.0 | 2896540.0 cm-1 |
| 65576519 1G4.0 | 2898440.0 cm-1 |
| 65576519 3G13.0 | 2900740.0 cm-1 |
| 65576519 3D7.0 | 2909940.0 cm-1 |
| 65576519 1D2.0 | 2919640.0 cm-1 |
| 65576519 3F10.0 | 2920940.0 cm-1 |
| 65576519 1F3.0 | 2922540.0 cm-1 |
| 65576519 1D2.0 | 2927840.0 cm-1 |
| 65576519 3P4.0 | 2952740.0 cm-1 |
| 65576519 1G4.0 | 2968140.0 cm-1 |
| 65576519 1S0.0 | 3041940.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 65586 == 3P6 3D8 1 3F 3F/ 2 65586 == 3P6 3D8 2 3P 3P/ 3 65586 == 3P6 3D8 4 1D 1D/ 4 65586 == 3P6 3D8 3 1G 1G/ 5 65586 == 3P6 3D8 5 1S 1S/ 6 24555596 == 3S2 3P5 3D9 1 2P 2P/ 1 2D 1D/ 7 24555596 == 3S2 3P5 3D9 1 2P 2P/ 1 2D 3F/ 8 24555596 == 3S2 3P5 3D9 1 2P 2P/ 1 2D 3D/ 9 24555596 == 3S2 3P5 3D9 1 2P 2P/ 1 2D 3P/ 10 24555596 == 3S2 3P5 3D9 1 2P 2P/ 1 2D 1F/ 11 24555596 == 3S2 3P5 3D9 1 2P 2P/ 1 2D 1P/ 12 65576517 == 3P6 3D7 4S1 1 4F 4F/ 1 2S 5F/ 13 65576517 == 3P6 3D7 4S1 1 4F 4F/ 1 2S 3F/ 14 65576517 == 3P6 3D7 4S1 * 8 2P 2P/ 1 2S 1P/ 15 65576517 == 3P6 3D7 4S1 2 4P 4P/ 1 2S 5P/ 16 65576517 == 3P6 3D7 4S1 4 2G 2G/ 1 2S 3G/ 17 65576517 == 3P6 3D7 4S1 2 4P 4P/ 1 2S 3P/ 18 65576517 == 3P6 3D7 4S1 4 2G 2G/ 1 2S 1G/ 19 65576517 == 3P6 3D7 4S1 3 2H 2H/ 1 2S 3H/ 20 65576517 == 3P6 3D7 4S1 8 2P 2P/ 1 2S 3P/ 21 65576517 == 3P6 3D7 4S1 7 2D 2D/ 1 2S 1D/ 22 65576517 == 3P6 3D7 4S1 3 2H 2H/ 1 2S 1H/ 23 65576517 == 3P6 3D7 4S1 7 2D 2D/ 1 2S 3D/ 24 65576517 == 3P6 3D7 4S1 5 2F 2F/ 1 2S 3F/ 25 65576517 == 3P6 3D7 4S1 5 2F 2F/ 1 2S 1F/ 26 65576517 == 3P6 3D7 4S1 6 2D 2D/ 1 2S 3D/ 27 65576517 == 3P6 3D7 4S1 6 2D 2D/ 1 2S 1D/ 28 65576518 == 3P6 3D7 4P1 1 4F 4F/ 1 2P 5F/ 29 65576518 == 3P6 3D7 4P1 1 4F 4F/ 1 2P 5G/ 30 65576518 == 3P6 3D7 4P1 1 4F 4F/ 1 2P 3G/ 31 65576518 == 3P6 3D7 4P1 1 4F 4F/ 1 2P 5D/ 32 65576518 == 3P6 3D7 4P1 2 4P 4P/ 1 2P 5S/ 33 65576518 == 3P6 3D7 4P1 1 4F 4F/ 1 2P 3F/ 34 65576518 == 3P6 3D7 4P1 * 2 4P 4P/ 1 2P 3S/ 35 65576518 == 3P6 3D7 4P1 * 4 2G 2G/ 1 2P 1G/ 36 65576518 == 3P6 3D7 4P1 1 4F 4F/ 1 2P 3D/ 37 65576518 == 3P6 3D7 4P1 2 4P 4P/ 1 2P 5D/ 38 65576518 == 3P6 3D7 4P1 4 2G 2G/ 1 2P 3G/ 39 65576518 == 3P6 3D7 4P1 * 7 2D 2D/ 1 2P 1D/ 40 65576518 == 3P6 3D7 4P1 * 7 2D 2D/ 1 2P 1F/ 41 65576518 == 3P6 3D7 4P1 3 2H 2H/ 1 2P 3I/ 42 65576518 == 3P6 3D7 4P1 4 2G 2G/ 1 2P 3H/ 43 65576518 == 3P6 3D7 4P1 * 4 2G 2G/ 1 2P 1F/ 44 65576518 == 3P6 3D7 4P1 8 2P 2P/ 1 2P 1S/ 45 65576518 == 3P6 3D7 4P1 7 2D 2D/ 1 2P 3F/ 46 65576518 == 3P6 3D7 4P1 4 2G 2G/ 1 2P 1H/ 47 65576518 == 3P6 3D7 4P1 8 2P 2P/ 1 2P 1P/ 48 65576518 == 3P6 3D7 4P1 3 2H 2H/ 1 2P 3G/ 49 65576518 == 3P6 3D7 4P1 8 2P 2P/ 1 2P 3P/ 50 65576518 == 3P6 3D7 4P1 2 4P 4P/ 1 2P 3P/ 51 65576518 == 3P6 3D7 4P1 4 2G 2G/ 1 2P 3F/ 52 65576518 == 3P6 3D7 4P1 * 2 4P 4P/ 1 2P 3D/ 53 65576518 == 3P6 3D7 4P1 * 2 4P 4P/ 1 2P 5P/ 54 65576518 == 3P6 3D7 4P1 3 2H 2H/ 1 2P 3H/ 55 65576518 == 3P6 3D7 4P1 3 2H 2H/ 1 2P 1G/ 56 65576518 == 3P6 3D7 4P1 7 2D 2D/ 1 2P 3D/ 57 65576518 == 3P6 3D7 4P1 7 2D 2D/ 1 2P 3P/ 58 65576518 == 3P6 3D7 4P1 3 2H 2H/ 1 2P 1I/ 59 65576518 == 3P6 3D7 4P1 * 5 2F 2F/ 1 2P 1D/ 60 65576518 == 3P6 3D7 4P1 7 2D 2D/ 1 2P 1P/ 61 65576518 == 3P6 3D7 4P1 8 2P 2P/ 1 2P 3D/ 62 65576518 == 3P6 3D7 4P1 8 2P 2P/ 1 2P 1D/ 63 65576518 == 3P6 3D7 4P1 * 8 2P 2P/ 1 2P 3S/ 64 65576518 == 3P6 3D7 4P1 3 2H 2H/ 1 2P 1H/ 65 65576518 == 3P6 3D7 4P1 5 2F 2F/ 1 2P 3G/ 66 65576518 == 3P6 3D7 4P1 5 2F 2F/ 1 2P 3D/ 67 65576518 == 3P6 3D7 4P1 5 2F 2F/ 1 2P 1G/ 68 65576518 == 3P6 3D7 4P1 5 2F 2F/ 1 2P 3F/ 69 65576518 == 3P6 3D7 4P1 5 2F 2F/ 1 2P 1F/ 70 65576518 == 3P6 3D7 4P1 6 2D 2D/ 1 2P 3P/ 71 65576518 == 3P6 3D7 4P1 6 2D 2D/ 1 2P 3F/ 72 65576518 == 3P6 3D7 4P1 6 2D 2D/ 1 2P 1F/ 73 65576518 == 3P6 3D7 4P1 * 6 2D 2D/ 1 2P 3D/ 74 65576518 == 3P6 3D7 4P1 6 2D 2D/ 1 2P 1P/ 75 65576518 == 3P6 3D7 4P1 6 2D 2D/ 1 2P 1D/ 76 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 5F/ 77 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 5P/ 78 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 5G/ 79 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 5H/ 80 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 3G/ 81 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 3D/ 82 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 3H/ 83 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 5D/ 84 65576519 == 3P6 3D7 4D1 1 4F 4F/ 1 2D 3P/ 85 65576519 == 3P6 3D7 4D1 2 4P 4P/ 1 2D 5P/ 86 65576519 == 3P6 3D7 4D1 2 4P 4P/ 1 2D 5F/ 87 65576519 == 3P6 3D7 4D1 * 4 2G 2G/ 1 2D 1H/ 88 65576519 == 3P6 3D7 4D1 4 2G 2G/ 1 2D 3F/ 89 65576519 == 3P6 3D7 4D1 4 2G 2G/ 1 2D 3I/ 90 65576519 == 3P6 3D7 4D1 4 2G 2G/ 1 2D 3D/ 91 65576519 == 3P6 3D7 4D1 8 2P 2P/ 1 2D 1F/ 92 65576519 == 3P6 3D7 4D1 4 2G 2G/ 1 2D 3G/ 93 65576519 == 3P6 3D7 4D1 4 2G 2G/ 1 2D 1F/ 94 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 1K/ 95 65576519 == 3P6 3D7 4D1 2 4P 4P/ 1 2D 3F/ 96 65576519 == 3P6 3D7 4D1 4 2G 2G/ 1 2D 3H/ 97 65576519 == 3P6 3D7 4D1 2 4P 4P/ 1 2D 5D/ 98 65576519 == 3P6 3D7 4D1 2 4P 4P/ 1 2D 3P/ 99 65576519 == 3P6 3D7 4D1 * 8 2P 2P/ 1 2D 1D/ 100 65576519 == 3P6 3D7 4D1 * 3 2H 2H/ 1 2D 3F/ 101 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 3G/ 102 65576519 == 3P6 3D7 4D1 * 4 2G 2G/ 1 2D 1I/ 103 65576519 == 3P6 3D7 4D1 * 2 4P 4P/ 1 2D 3D/ 104 65576519 == 3P6 3D7 4D1 * 7 2D 2D/ 1 2D 3D/ 105 65576519 == 3P6 3D7 4D1 * 4 2G 2G/ 1 2D 1D/ 106 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 3K/ 107 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 1F/ 108 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 1H/ 109 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 3I/ 110 65576519 == 3P6 3D7 4D1 * 4 2G 2G/ 1 2D 1G/ 111 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 3G/ 112 65576519 == 3P6 3D7 4D1 * 8 2P 2P/ 1 2D 3P/ 113 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 1P/ 114 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 1G/ 115 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 3S/ 116 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 3H/ 117 65576519 == 3P6 3D7 4D1 8 2P 2P/ 1 2D 3F/ 118 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 1I/ 119 65576519 == 3P6 3D7 4D1 8 2P 2P/ 1 2D 1P/ 120 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 1F/ 121 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 1S/ 122 65576519 == 3P6 3D7 4D1 * 8 2P 2P/ 1 2D 3D/ 123 65576519 == 3P6 3D7 4D1 7 2D 2D/ 1 2D 3F/ 124 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 1P/ 125 65576519 == 3P6 3D7 4D1 * 1 4F 4F/ 1 2D 3F/ 126 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 3H/ 127 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 3F/ 128 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 3D/ 129 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 1H/ 130 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 3G/ 131 65576519 == 3P6 3D7 4D1 * 7 2D 2D/ 1 2D 3P/ 132 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 1D/ 133 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 1F/ 134 65576519 == 3P6 3D7 4D1 * 5 2F 2F/ 1 2D 1G/ 135 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 3S/ 136 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 3P/ 137 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 1P/ 138 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 1G/ 139 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 3G/ 140 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 3D/ 141 65576519 == 3P6 3D7 4D1 * 7 2D 2D/ 1 2D 1D/ 142 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 3F/ 143 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 1F/ 144 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 1D/ 145 65576519 == 3P6 3D7 4D1 5 2F 2F/ 1 2D 3P/ 146 65576519 == 3P6 3D7 4D1 3 2H 2H/ 1 2D 1G/ 147 65576519 == 3P6 3D7 4D1 6 2D 2D/ 1 2D 1S/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 Map to LS levels : 1 1 1 2 2 2 3 4 5 7 6 7 8 9 9 8 8 7 9 10 11 12 12 12 13 12 12 13 13 15 15 14 16 16 17 15 17 16 19 18 19 20 23 17 21 19 20 22 20 24 24 23 23 24 25 26 26 26 27 31 30 28 29 28 29 28 28 29 29 33 37 32 37 36 37 28 45 29 38 34 35 31 31 49 33 30 42 31 30 41 33 48 31 36 38 39 36 53 49 37 37 42 40 51 41 50 43 44 46 52 47 48 61 52 50 41 51 38 53 51 42 45 52 56 56 53 54 57 45 54 55 61 65 57 58 54 59 50 60 66 62 48 65 63 64 56 66 68 68 57 67 61 49 66 65 68 69 71 70 73 71 70 70 72 71 73 74 75 73 76 76 77 78 79 80 76 82 76 78 81 76 77 79 83 78 78 88 79 78 81 79 83 77 79 83 84 80 80 81 83 82 83 122 85 85 82 84 85 125 90 98 86 86 112 86 89 87 86 89 84 91 95 90 86 92 96 92 100 93 97 112 101 95 97 94 92 89 103 101 106 96 99 104 98 97 104 100 102 103 100 88 90 96 123 103 97 109 105 109 107 108 98 97 111 88 106 110 111 116 111 104 113 106 114 115 117 101 95 109 122 117 116 123 116 118 112 119 120 125 121 117 126 131 127 124 130 126 128 127 128 128 129 127 130 131 145 126 130 132 133 134 135 136 136 139 136 125 137 138 139 142 123 139 140 140 140 141 143 142 144 142 122 131 145 145 146 147 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#mo42-16_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 15336 5234 12292 initially 3726 1296 3849 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 28/02/04 -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- --------------------------------------------------------------------------------