ls#mo19.dat
Resolved Specific Ion Data Collections
- Ion
- Mo19+
- Temperature Range
- 6.893 eV → 7.583 x 104 eV
ADF04
- Filename
- ls#mo19.dat
- Full Path
- adf04/copmm#42/ls#mo19.dat
Download data
- Spontaneous Emission: Mo+19(i) → Mo+19(j) + hv
- Electron Impact Excitation: Mo+19(i) + e → Mo+19(j) + e
| 65556 6S2.5 | 0.0 cm-1 |
| 65556 4G17.5 | 88336.0 cm-1 |
| 65556 4P5.5 | 94688.0 cm-1 |
| 65556 4D9.5 | 118777.0 cm-1 |
| 65556 2I12.5 | 131519.0 cm-1 |
| 65556 2D4.5 | 143103.0 cm-1 |
| 65556 4F13.5 | 150623.0 cm-1 |
| 65556 2H10.5 | 172327.0 cm-1 |
| 65556 2F6.5 | 180756.0 cm-1 |
| 65556 2G8.5 | 181982.0 cm-1 |
| 65556 2F6.5 | 183920.0 cm-1 |
| 65556 2S0.5 | 199430.0 cm-1 |
| 65556 2D4.5 | 226393.0 cm-1 |
| 65556 2G8.5 | 245736.0 cm-1 |
| 65556 2P2.5 | 291990.0 cm-1 |
| 65556 2D4.5 | 322920.0 cm-1 |
| 24555566 6F20.5 | 1183790.0 cm-1 |
| 24555566 6D14.5 | 1198890.0 cm-1 |
| 24555566 2P2.5 | 1275690.0 cm-1 |
| 24555566 4H21.5 | 1278190.0 cm-1 |
| 24555566 4H21.5 | 1282690.0 cm-1 |
| 24555566 4F13.5 | 1294590.0 cm-1 |
| 24555566 6P8.5 | 1296390.0 cm-1 |
| 24555566 2S0.5 | 1301990.0 cm-1 |
| 24555566 2F6.5 | 1303190.0 cm-1 |
| 24555566 4I25.5 | 1309590.0 cm-1 |
| 24555566 4D9.5 | 1325890.0 cm-1 |
| 24555566 4D9.5 | 1330990.0 cm-1 |
| 24555566 4D9.5 | 1349890.0 cm-1 |
| 24555566 4G17.5 | 1355090.0 cm-1 |
| 24555566 4F13.5 | 1365690.0 cm-1 |
| 24555566 4P5.5 | 1369490.0 cm-1 |
| 24555566 4G17.5 | 1369590.0 cm-1 |
| 24555566 2I12.5 | 1373790.0 cm-1 |
| 24555566 4F13.5 | 1373990.0 cm-1 |
| 24555566 2H10.5 | 1378190.0 cm-1 |
| 24555566 4D9.5 | 1385790.0 cm-1 |
| 24555566 2F6.5 | 1389890.0 cm-1 |
| 24555566 4P5.5 | 1391090.0 cm-1 |
| 24555566 2J14.5 | 1397290.0 cm-1 |
| 24555566 4P5.5 | 1403190.0 cm-1 |
| 24555566 2F6.5 | 1409090.0 cm-1 |
| 24555566 4G17.5 | 1410890.0 cm-1 |
| 24555566 2P2.5 | 1412390.0 cm-1 |
| 24555566 4S1.5 | 1419590.0 cm-1 |
| 24555566 2G8.5 | 1422490.0 cm-1 |
| 24555566 2D4.5 | 1433890.0 cm-1 |
| 24555566 2F6.5 | 1443690.0 cm-1 |
| 24555566 2G8.5 | 1451890.0 cm-1 |
| 24555566 2D4.5 | 1455490.0 cm-1 |
| 24555566 4G17.5 | 1464990.0 cm-1 |
| 24555566 4D9.5 | 1466890.0 cm-1 |
| 24555566 4F13.5 | 1469690.0 cm-1 |
| 24555566 2P2.5 | 1469890.0 cm-1 |
| 24555566 4S1.5 | 1471590.0 cm-1 |
| 24555566 2G8.5 | 1482790.0 cm-1 |
| 24555566 2G8.5 | 1483090.0 cm-1 |
| 24555566 2H10.5 | 1483790.0 cm-1 |
| 24555566 4P5.5 | 1494290.0 cm-1 |
| 24555566 2F6.5 | 1494490.0 cm-1 |
| 24555566 2G8.5 | 1495490.0 cm-1 |
| 24555566 2I12.5 | 1505490.0 cm-1 |
| 24555566 2H10.5 | 1506890.0 cm-1 |
| 24555566 2F6.5 | 1529590.0 cm-1 |
| 24555566 4F13.5 | 1529890.0 cm-1 |
| 24555566 2H10.5 | 1531290.0 cm-1 |
| 24555566 2F6.5 | 1541790.0 cm-1 |
| 24555566 2D4.5 | 1543690.0 cm-1 |
| 24555566 2F6.5 | 1547990.0 cm-1 |
| 24555566 2G8.5 | 1573390.0 cm-1 |
| 24555566 2D4.5 | 1575990.0 cm-1 |
| 24555566 2D4.5 | 1586790.0 cm-1 |
| 24555566 2P2.5 | 1595890.0 cm-1 |
| 24555566 2D4.5 | 1599790.0 cm-1 |
| 24555566 4D9.5 | 1619690.0 cm-1 |
| 24555566 2P2.5 | 1657390.0 cm-1 |
| 24555566 2P2.5 | 1663790.0 cm-1 |
| 24555566 2G8.5 | 1665190.0 cm-1 |
| 24555566 2H10.5 | 1665190.0 cm-1 |
| 24555566 2F6.5 | 1678690.0 cm-1 |
| 24555566 2S0.5 | 1683690.0 cm-1 |
| 24555566 2D4.5 | 1728790.0 cm-1 |
| 24555566 2D4.5 | 1730790.0 cm-1 |
| 24555566 2P2.5 | 1745890.0 cm-1 |
| 65546517 6D14.5 | 2689090.0 cm-1 |
| 65546517 4D9.5 | 2711290.0 cm-1 |
| 65546517 4H21.5 | 2751490.0 cm-1 |
| 65546517 4P5.5 | 2764390.0 cm-1 |
| 65546517 2H10.5 | 2766290.0 cm-1 |
| 65546517 4F13.5 | 2771090.0 cm-1 |
| 65546517 4G17.5 | 2775290.0 cm-1 |
| 65546517 2P2.5 | 2779990.0 cm-1 |
| 65546517 2F6.5 | 2788990.0 cm-1 |
| 65546517 2G8.5 | 2791190.0 cm-1 |
| 65546517 4D9.5 | 2798290.0 cm-1 |
| 65546517 2I12.5 | 2804490.0 cm-1 |
| 65546517 2D4.5 | 2808590.0 cm-1 |
| 65546517 2G8.5 | 2824690.0 cm-1 |
| 65546517 2S0.5 | 2829190.0 cm-1 |
| 65546517 2D4.5 | 2835190.0 cm-1 |
| 65546517 2F6.5 | 2844490.0 cm-1 |
| 65546517 4P5.5 | 2865390.0 cm-1 |
| 65546517 4F13.5 | 2869190.0 cm-1 |
| 65546517 2F6.5 | 2882290.0 cm-1 |
| 65546517 2P2.5 | 2887890.0 cm-1 |
| 65546517 2G8.5 | 2896390.0 cm-1 |
| 65546517 2D4.5 | 2956590.0 cm-1 |
| 65546518 6P8.5 | 2969990.0 cm-1 |
| 65546518 6F20.5 | 2971190.0 cm-1 |
| 65546518 6D14.5 | 2991790.0 cm-1 |
| 65546518 4P5.5 | 2996990.0 cm-1 |
| 65546518 4F13.5 | 3013290.0 cm-1 |
| 65546518 4D9.5 | 3030390.0 cm-1 |
| 65546517 2S0.5 | 3031790.0 cm-1 |
| 65546518 4H21.5 | 3044190.0 cm-1 |
| 65546518 4I25.5 | 3049890.0 cm-1 |
| 65546518 4S1.5 | 3050390.0 cm-1 |
| 65546518 4D9.5 | 3050790.0 cm-1 |
| 65546518 4G17.5 | 3050990.0 cm-1 |
| 65546518 4P5.5 | 3055090.0 cm-1 |
| 65546518 4H21.5 | 3060790.0 cm-1 |
| 65546518 2H10.5 | 3061490.0 cm-1 |
| 65546518 2F6.5 | 3062290.0 cm-1 |
| 65546518 2I12.5 | 3065090.0 cm-1 |
| 65546518 4F13.5 | 3065590.0 cm-1 |
| 65546518 4S1.5 | 3068090.0 cm-1 |
| 65546518 2S0.5 | 3068290.0 cm-1 |
| 65546518 4G17.5 | 3069790.0 cm-1 |
| 65546518 2J14.5 | 3072790.0 cm-1 |
| 65546518 4G17.5 | 3074390.0 cm-1 |
| 65546518 2H10.5 | 3079490.0 cm-1 |
| 65546518 4F13.5 | 3080390.0 cm-1 |
| 65546518 2G8.5 | 3081990.0 cm-1 |
| 65546518 4D9.5 | 3083190.0 cm-1 |
| 65546518 4P5.5 | 3086390.0 cm-1 |
| 65546518 2G8.5 | 3087290.0 cm-1 |
| 65546518 2D4.5 | 3090690.0 cm-1 |
| 65546518 2I12.5 | 3092790.0 cm-1 |
| 65546518 2F6.5 | 3093190.0 cm-1 |
| 65546518 2H10.5 | 3093490.0 cm-1 |
| 65546518 4F13.5 | 3093790.0 cm-1 |
| 65546518 2P2.5 | 3095590.0 cm-1 |
| 65546518 4D9.5 | 3096090.0 cm-1 |
| 65546518 2D4.5 | 3097190.0 cm-1 |
| 65546518 2D4.5 | 3100890.0 cm-1 |
| 65546518 2G8.5 | 3109190.0 cm-1 |
| 65546518 2P2.5 | 3117190.0 cm-1 |
| 65546518 2H10.5 | 3118190.0 cm-1 |
| 65546518 2F6.5 | 3120090.0 cm-1 |
| 65546518 2D4.5 | 3120990.0 cm-1 |
| 65546518 2F6.5 | 3125490.0 cm-1 |
| 65546518 2P2.5 | 3125690.0 cm-1 |
| 65546518 2F6.5 | 3130590.0 cm-1 |
| 65546518 2F6.5 | 3132890.0 cm-1 |
| 65546518 2G8.5 | 3134190.0 cm-1 |
| 65546518 2G8.5 | 3137690.0 cm-1 |
| 65546518 2P2.5 | 3150290.0 cm-1 |
| 65546518 4D9.5 | 3153490.0 cm-1 |
| 65546518 4P5.5 | 3154590.0 cm-1 |
| 65546518 2D4.5 | 3163490.0 cm-1 |
| 65546518 4G17.5 | 3166190.0 cm-1 |
| 65546518 4F13.5 | 3167690.0 cm-1 |
| 65546518 2G8.5 | 3167690.0 cm-1 |
| 65546518 4D9.5 | 3169490.0 cm-1 |
| 65546518 2D4.5 | 3177390.0 cm-1 |
| 65546518 2F6.5 | 3184990.0 cm-1 |
| 65546518 2G8.5 | 3189690.0 cm-1 |
| 65546518 2H10.5 | 3189990.0 cm-1 |
| 65546518 2S0.5 | 3190390.0 cm-1 |
| 65546518 2P2.5 | 3192990.0 cm-1 |
| 65546518 2D4.5 | 3201090.0 cm-1 |
| 65546518 2F6.5 | 3205890.0 cm-1 |
| 65546518 2P2.5 | 3230890.0 cm-1 |
| 65546518 2F6.5 | 3255390.0 cm-1 |
| 65546518 2D4.5 | 3276290.0 cm-1 |
| 65546518 2P2.5 | 3335890.0 cm-1 |
| 65546519 4S1.5 | 3388190.0 cm-1 |
| 65546519 6P8.5 | 3404590.0 cm-1 |
| 65546519 6G26.5 | 3408090.0 cm-1 |
| 65546519 6F20.5 | 3418890.0 cm-1 |
| 65546519 6D14.5 | 3423690.0 cm-1 |
| 65546519 4G17.5 | 3433690.0 cm-1 |
| 65546519 4D9.5 | 3438890.0 cm-1 |
| 65546519 4P5.5 | 3439890.0 cm-1 |
| 65546519 4F13.5 | 3453490.0 cm-1 |
| 65546519 2P2.5 | 3460990.0 cm-1 |
| 65546519 4I25.5 | 3468490.0 cm-1 |
| 65546519 4H21.5 | 3471890.0 cm-1 |
| 65546519 2G8.5 | 3473090.0 cm-1 |
| 65546519 4J29.5 | 3477590.0 cm-1 |
| 65546519 2D4.5 | 3484990.0 cm-1 |
| 65546519 4H21.5 | 3485690.0 cm-1 |
| 65546519 2J14.5 | 3487690.0 cm-1 |
| 65546519 4F13.5 | 3489990.0 cm-1 |
| 65546519 2I12.5 | 3492790.0 cm-1 |
| 65546519 2H10.5 | 3496690.0 cm-1 |
| 65546519 2H10.5 | 3496890.0 cm-1 |
| 65546519 4F13.5 | 3497990.0 cm-1 |
| 65546519 2F6.5 | 3498490.0 cm-1 |
| 65546519 6S2.5 | 3500090.0 cm-1 |
| 65546519 4H21.5 | 3501090.0 cm-1 |
| 65546519 4F13.5 | 3504090.0 cm-1 |
| 65546519 4G17.5 | 3505390.0 cm-1 |
| 65546519 4D9.5 | 3505790.0 cm-1 |
| 65546519 2F6.5 | 3507390.0 cm-1 |
| 65546519 4I25.5 | 3511390.0 cm-1 |
| 65546519 2G8.5 | 3512690.0 cm-1 |
| 65546519 4S1.5 | 3514290.0 cm-1 |
| 65546519 4D9.5 | 3514890.0 cm-1 |
| 65546519 2F6.5 | 3516690.0 cm-1 |
| 65546519 4D9.5 | 3519390.0 cm-1 |
| 65546519 2D4.5 | 3520790.0 cm-1 |
| 65546519 4G17.5 | 3520990.0 cm-1 |
| 65546519 2H10.5 | 3521090.0 cm-1 |
| 65546519 2I12.5 | 3521690.0 cm-1 |
| 65546519 2P2.5 | 3522590.0 cm-1 |
| 65546519 4P5.5 | 3525090.0 cm-1 |
| 65546519 4P5.5 | 3525190.0 cm-1 |
| 65546519 2P2.5 | 3525590.0 cm-1 |
| 65546519 2J14.5 | 3527390.0 cm-1 |
| 65546519 2K16.5 | 3529290.0 cm-1 |
| 65546519 4D9.5 | 3530190.0 cm-1 |
| 65546519 2G8.5 | 3531190.0 cm-1 |
| 65546519 2H10.5 | 3533490.0 cm-1 |
| 65546519 4F13.5 | 3533690.0 cm-1 |
| 65546519 4F13.5 | 3535590.0 cm-1 |
| 65546519 2F6.5 | 3536290.0 cm-1 |
| 65546519 2P2.5 | 3536490.0 cm-1 |
| 65546519 4G17.5 | 3537790.0 cm-1 |
| 65546519 2G8.5 | 3539290.0 cm-1 |
| 65546519 4G17.5 | 3542890.0 cm-1 |
| 65546519 2H10.5 | 3543990.0 cm-1 |
| 65546519 2I12.5 | 3545190.0 cm-1 |
| 65546519 2D4.5 | 3552790.0 cm-1 |
| 65546519 2D4.5 | 3552990.0 cm-1 |
| 65546519 2D4.5 | 3554490.0 cm-1 |
| 65546519 2G8.5 | 3557690.0 cm-1 |
| 65546519 2S0.5 | 3559190.0 cm-1 |
| 65546519 2D4.5 | 3559690.0 cm-1 |
| 65546519 4P5.5 | 3563690.0 cm-1 |
| 65546519 2H10.5 | 3565590.0 cm-1 |
| 65546519 2G8.5 | 3570090.0 cm-1 |
| 65546519 2F6.5 | 3570690.0 cm-1 |
| 65546519 2F6.5 | 3571890.0 cm-1 |
| 65546519 4D9.5 | 3580990.0 cm-1 |
| 65546519 2G8.5 | 3586190.0 cm-1 |
| 65546519 2F6.5 | 3586590.0 cm-1 |
| 65546519 2P2.5 | 3587390.0 cm-1 |
| 65546519 2G8.5 | 3587490.0 cm-1 |
| 65546519 2D4.5 | 3587990.0 cm-1 |
| 65546519 2D4.5 | 3591090.0 cm-1 |
| 65546519 4G17.5 | 3592090.0 cm-1 |
| 65546519 2F6.5 | 3598490.0 cm-1 |
| 65546519 4H21.5 | 3598790.0 cm-1 |
| 65546519 4D9.5 | 3602290.0 cm-1 |
| 65546519 2I12.5 | 3604390.0 cm-1 |
| 65546519 2G8.5 | 3608490.0 cm-1 |
| 65546519 2F6.5 | 3608590.0 cm-1 |
| 65546519 4F13.5 | 3609790.0 cm-1 |
| 65546519 4P5.5 | 3610490.0 cm-1 |
| 65546519 4P5.5 | 3614090.0 cm-1 |
| 65546519 2H10.5 | 3615290.0 cm-1 |
| 65546519 2I12.5 | 3624090.0 cm-1 |
| 65546519 2F6.5 | 3627090.0 cm-1 |
| 65546519 2P2.5 | 3627590.0 cm-1 |
| 65546519 2F6.5 | 3631290.0 cm-1 |
| 65546519 2D4.5 | 3639390.0 cm-1 |
| 65546519 2H10.5 | 3640390.0 cm-1 |
| 65546519 4F13.5 | 3648790.0 cm-1 |
| 65546519 2S0.5 | 3649590.0 cm-1 |
| 65546519 2G8.5 | 3650890.0 cm-1 |
| 65546519 2D4.5 | 3653890.0 cm-1 |
| 65546519 2S0.5 | 3682390.0 cm-1 |
| 65546519 2P2.5 | 3683390.0 cm-1 |
| 65546519 2P2.5 | 3699790.0 cm-1 |
| 65546519 2F6.5 | 3700190.0 cm-1 |
| 65546519 2D4.5 | 3707090.0 cm-1 |
| 65546519 2G8.5 | 3707990.0 cm-1 |
| 65546519 2D4.5 | 3722890.0 cm-1 |
| 65546519 2D4.5 | 3780890.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 65556 == 3P6 3D5 1 6S 6S/ 2 65556 == 3P6 3D5 2 4G 4G/ 3 65556 == 3P6 3D5 5 4P 4P/ 4 65556 == 3P6 3D5 4 4D 4D/ 5 65556 == 3P6 3D5 6 2I 2I/ 6 65556 == 3P6 3D5 * 14 2D 2D/ 7 65556 == 3P6 3D5 3 4F 4F/ 8 65556 == 3P6 3D5 7 2H 2H/ 9 65556 == 3P6 3D5 10 2F 2F/ 10 65556 == 3P6 3D5 9 2G 2G/ 11 65556 == 3P6 3D5 11 2F 2F/ 12 65556 == 3P6 3D5 16 2S 2S/ 13 65556 == 3P6 3D5 13 2D 2D/ 14 65556 == 3P6 3D5 8 2G 2G/ 15 65556 == 3P6 3D5 15 2P 2P/ 16 65556 == 3P6 3D5 12 2D 2D/ 17 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 6F/ 18 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 6D/ 19 24555566 == 3S2 3P5 3D6 * 1 2P 2P/16 1S 2P/ 20 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 4H/ 21 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 4H/ 22 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 5 3F 4F/ 23 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 6P/ 24 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 2S/ 25 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 2F/ 26 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 4I/ 27 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 4D/ 28 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 4D/ 29 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 4D/ 30 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 5 3F 4G/ 31 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 3 3G 4F/ 32 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 4P/ 33 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 4G/ 34 24555566 == 3S2 3P5 3D6 1 2P 2P/ 9 1I 2I/ 35 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 6 3D 4F/ 36 24555566 == 3S2 3P5 3D6 1 2P 2P/11 1G 2H/ 37 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 4D/ 38 24555566 == 3S2 3P5 3D6 * 1 2P 2P/12 1F 2F/ 39 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 7 3P 4P/ 40 24555566 == 3S2 3P5 3D6 1 2P 2P/ 9 1I 2K/ 41 24555566 == 3S2 3P5 3D6 1 2P 2P/ 6 3D 4P/ 42 24555566 == 3S2 3P5 3D6 * 1 2P 2P/14 1D 2F/ 43 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 4G/ 44 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 2P/ 45 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 4S/ 46 24555566 == 3S2 3P5 3D6 * 1 2P 2P/10 1G 2G/ 47 24555566 == 3S2 3P5 3D6 * 1 2P 2P/13 1D 2D/ 48 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 3 3G 2F/ 49 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 2 3H 2G/ 50 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 2D/ 51 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 4G/ 52 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 5 3F 4D/ 53 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 4F/ 54 24555566 == 3S2 3P5 3D6 1 2P 2P/14 1D 2P/ 55 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 4S/ 56 24555566 == 3S2 3P5 3D6 1 2P 2P/12 1F 2G/ 57 24555566 == 3S2 3P5 3D6 1 2P 2P/11 1G 2G/ 58 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 2H/ 59 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 4P/ 60 24555566 == 3S2 3P5 3D6 1 2P 2P/ 5 3F 2F/ 61 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 5 3F 2G/ 62 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 2I/ 63 24555566 == 3S2 3P5 3D6 * 1 2P 2P/10 1G 2H/ 64 24555566 == 3S2 3P5 3D6 1 2P 2P/10 1G 2F/ 65 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 1 5D 4F/ 66 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 9 1I 2H/ 67 24555566 == 3S2 3P5 3D6 1 2P 2P/13 1D 2F/ 68 24555566 == 3S2 3P5 3D6 * 1 2P 2P/12 1F 2D/ 69 24555566 == 3S2 3P5 3D6 1 2P 2P/11 1G 2F/ 70 24555566 == 3S2 3P5 3D6 1 2P 2P/ 3 3G 2G/ 71 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 2D/ 72 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 6 3D 2D/ 73 24555566 == 3S2 3P5 3D6 1 2P 2P/13 1D 2P/ 74 24555566 == 3S2 3P5 3D6 * 1 2P 2P/14 1D 2D/ 75 24555566 == 3S2 3P5 3D6 1 2P 2P/ 1 5D 4D/ 76 24555566 == 3S2 3P5 3D6 1 2P 2P/15 1S 2P/ 77 24555566 == 3S2 3P5 3D6 * 1 2P 2P/ 6 3D 2P/ 78 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 2G/ 79 24555566 == 3S2 3P5 3D6 1 2P 2P/ 2 3H 2H/ 80 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 2F/ 81 24555566 == 3S2 3P5 3D6 1 2P 2P/ 8 3P 2S/ 82 24555566 == 3S2 3P5 3D6 1 2P 2P/ 4 3F 2D/ 83 24555566 == 3S2 3P5 3D6 1 2P 2P/ 5 3F 2D/ 84 24555566 == 3S2 3P5 3D6 1 2P 2P/ 7 3P 2P/ 85 65546517 == 3P6 3D4 4S1 1 5D 5D/ 1 2S 6D/ 86 65546517 == 3P6 3D4 4S1 1 5D 5D/ 1 2S 4D/ 87 65546517 == 3P6 3D4 4S1 2 3H 3H/ 1 2S 4H/ 88 65546517 == 3P6 3D4 4S1 8 3P 3P/ 1 2S 4P/ 89 65546517 == 3P6 3D4 4S1 2 3H 3H/ 1 2S 2H/ 90 65546517 == 3P6 3D4 4S1 5 3F 3F/ 1 2S 4F/ 91 65546517 == 3P6 3D4 4S1 3 3G 3G/ 1 2S 4G/ 92 65546517 == 3P6 3D4 4S1 8 3P 3P/ 1 2S 2P/ 93 65546517 == 3P6 3D4 4S1 5 3F 3F/ 1 2S 2F/ 94 65546517 == 3P6 3D4 4S1 3 3G 3G/ 1 2S 2G/ 95 65546517 == 3P6 3D4 4S1 6 3D 3D/ 1 2S 4D/ 96 65546517 == 3P6 3D4 4S1 9 1I 1I/ 1 2S 2I/ 97 65546517 == 3P6 3D4 4S1 6 3D 3D/ 1 2S 2D/ 98 65546517 == 3P6 3D4 4S1 11 1G 1G/ 1 2S 2G/ 99 65546517 == 3P6 3D4 4S1 16 1S 1S/ 1 2S 2S/ 100 65546517 == 3P6 3D4 4S1 14 1D 1D/ 1 2S 2D/ 101 65546517 == 3P6 3D4 4S1 12 1F 1F/ 1 2S 2F/ 102 65546517 == 3P6 3D4 4S1 7 3P 3P/ 1 2S 4P/ 103 65546517 == 3P6 3D4 4S1 4 3F 3F/ 1 2S 4F/ 104 65546517 == 3P6 3D4 4S1 4 3F 3F/ 1 2S 2F/ 105 65546517 == 3P6 3D4 4S1 7 3P 3P/ 1 2S 2P/ 106 65546517 == 3P6 3D4 4S1 10 1G 1G/ 1 2S 2G/ 107 65546517 == 3P6 3D4 4S1 13 1D 1D/ 1 2S 2D/ 108 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 6P/ 109 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 6F/ 110 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 6D/ 111 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 4P/ 112 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 4F/ 113 65546518 == 3P6 3D4 4P1 1 5D 5D/ 1 2P 4D/ 114 65546517 == 3P6 3D4 4S1 15 1S 1S/ 1 2S 2S/ 115 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 4H/ 116 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 4I/ 117 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 4S/ 118 65546518 == 3P6 3D4 4P1 * 8 3P 3P/ 1 2P 4D/ 119 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 4G/ 120 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 4P/ 121 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 4H/ 122 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 2H/ 123 65546518 == 3P6 3D4 4P1 * 3 3G 3G/ 1 2P 2F/ 124 65546518 == 3P6 3D4 4P1 * 2 3H 3H/ 1 2P 2I/ 125 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 4F/ 126 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 4S/ 127 65546518 == 3P6 3D4 4P1 * 7 3P 3P/ 1 2P 2S/ 128 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 4G/ 129 65546518 == 3P6 3D4 4P1 * 9 1I 1I/ 1 2P 2K/ 130 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 4G/ 131 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 2H/ 132 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 4F/ 133 65546518 == 3P6 3D4 4P1 2 3H 3H/ 1 2P 2G/ 134 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 4D/ 135 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 4P/ 136 65546518 == 3P6 3D4 4P1 * 5 3F 3F/ 1 2P 2G/ 137 65546518 == 3P6 3D4 4P1 * 5 3F 3F/ 1 2P 2D/ 138 65546518 == 3P6 3D4 4P1 9 1I 1I/ 1 2P 2I/ 139 65546518 == 3P6 3D4 4P1 5 3F 3F/ 1 2P 2F/ 140 65546518 == 3P6 3D4 4P1 11 1G 1G/ 1 2P 2H/ 141 65546518 == 3P6 3D4 4P1 * 6 3D 3D/ 1 2P 4F/ 142 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 2P/ 143 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 4D/ 144 65546518 == 3P6 3D4 4P1 * 14 1D 1D/ 1 2P 2D/ 145 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 2D/ 146 65546518 == 3P6 3D4 4P1 3 3G 3G/ 1 2P 2G/ 147 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 2P/ 148 65546518 == 3P6 3D4 4P1 9 1I 1I/ 1 2P 2H/ 149 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 2F/ 150 65546518 == 3P6 3D4 4P1 6 3D 3D/ 1 2P 2D/ 151 65546518 == 3P6 3D4 4P1 12 1F 1F/ 1 2P 2F/ 152 65546518 == 3P6 3D4 4P1 16 1S 1S/ 1 2P 2P/ 153 65546518 == 3P6 3D4 4P1 * 11 1G 1G/ 1 2P 2F/ 154 65546518 == 3P6 3D4 4P1 14 1D 1D/ 1 2P 2F/ 155 65546518 == 3P6 3D4 4P1 * 12 1F 1F/ 1 2P 2G/ 156 65546518 == 3P6 3D4 4P1 * 11 1G 1G/ 1 2P 2G/ 157 65546518 == 3P6 3D4 4P1 14 1D 1D/ 1 2P 2P/ 158 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 4D/ 159 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 4P/ 160 65546518 == 3P6 3D4 4P1 12 1F 1F/ 1 2P 2D/ 161 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 4G/ 162 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 4F/ 163 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 2G/ 164 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 4D/ 165 65546518 == 3P6 3D4 4P1 * 7 3P 3P/ 1 2P 2D/ 166 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 2F/ 167 65546518 == 3P6 3D4 4P1 10 1G 1G/ 1 2P 2G/ 168 65546518 == 3P6 3D4 4P1 10 1G 1G/ 1 2P 2H/ 169 65546518 == 3P6 3D4 4P1 8 3P 3P/ 1 2P 2S/ 170 65546518 == 3P6 3D4 4P1 7 3P 3P/ 1 2P 2P/ 171 65546518 == 3P6 3D4 4P1 4 3F 3F/ 1 2P 2D/ 172 65546518 == 3P6 3D4 4P1 10 1G 1G/ 1 2P 2F/ 173 65546518 == 3P6 3D4 4P1 13 1D 1D/ 1 2P 2P/ 174 65546518 == 3P6 3D4 4P1 13 1D 1D/ 1 2P 2F/ 175 65546518 == 3P6 3D4 4P1 13 1D 1D/ 1 2P 2D/ 176 65546518 == 3P6 3D4 4P1 15 1S 1S/ 1 2P 2P/ 177 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4S/ 178 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6P/ 179 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6G/ 180 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6F/ 181 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6D/ 182 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4G/ 183 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4D/ 184 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4P/ 185 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 4F/ 186 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 2P/ 187 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4I/ 188 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4H/ 189 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2G/ 190 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4K/ 191 65546519 == 3P6 3D4 4D1 * 8 3P 3P/ 1 2D 2D/ 192 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4H/ 193 65546519 == 3P6 3D4 4D1 * 2 3H 3H/ 1 2D 2K/ 194 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 4F/ 195 65546519 == 3P6 3D4 4D1 * 2 3H 3H/ 1 2D 2I/ 196 65546519 == 3P6 3D4 4D1 * 2 3H 3H/ 1 2D 2H/ 197 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 2H/ 198 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4F/ 199 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 2F/ 200 65546519 == 3P6 3D4 4D1 1 5D 5D/ 1 2D 6S/ 201 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4H/ 202 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4F/ 203 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 4G/ 204 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 4D/ 205 65546519 == 3P6 3D4 4D1 * 5 3F 3F/ 1 2D 2F/ 206 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 4I/ 207 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 2G/ 208 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4S/ 209 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4D/ 210 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 2F/ 211 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 4D/ 212 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 2D/ 213 65546519 == 3P6 3D4 4D1 * 2 3H 3H/ 1 2D 4G/ 214 65546519 == 3P6 3D4 4D1 3 3G 3G/ 1 2D 2H/ 215 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 2I/ 216 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 2P/ 217 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4P/ 218 65546519 == 3P6 3D4 4D1 8 3P 3P/ 1 2D 4P/ 219 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2P/ 220 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2K/ 221 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2L/ 222 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4D/ 223 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2G/ 224 65546519 == 3P6 3D4 4D1 * 9 1I 1I/ 1 2D 2H/ 225 65546519 == 3P6 3D4 4D1 2 3H 3H/ 1 2D 4F/ 226 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4F/ 227 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2F/ 228 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2P/ 229 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4G/ 230 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2G/ 231 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 4G/ 232 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2H/ 233 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2I/ 234 65546519 == 3P6 3D4 4D1 * 11 1G 1G/ 1 2D 2D/ 235 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2D/ 236 65546519 == 3P6 3D4 4D1 * 16 1S 1S/ 1 2D 2D/ 237 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2G/ 238 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2S/ 239 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2D/ 240 65546519 == 3P6 3D4 4D1 5 3F 3F/ 1 2D 4P/ 241 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2H/ 242 65546519 == 3P6 3D4 4D1 6 3D 3D/ 1 2D 2G/ 243 65546519 == 3P6 3D4 4D1 * 8 3P 3P/ 1 2D 2F/ 244 65546519 == 3P6 3D4 4D1 14 1D 1D/ 1 2D 2F/ 245 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 4D/ 246 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2G/ 247 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2F/ 248 65546519 == 3P6 3D4 4D1 12 1F 1F/ 1 2D 2P/ 249 65546519 == 3P6 3D4 4D1 * 10 1G 1G/ 1 2D 2G/ 250 65546519 == 3P6 3D4 4D1 * 12 1F 1F/ 1 2D 2D/ 251 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 2D/ 252 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4G/ 253 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2F/ 254 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4H/ 255 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4D/ 256 65546519 == 3P6 3D4 4D1 9 1I 1I/ 1 2D 2I/ 257 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2G/ 258 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 2F/ 259 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 4F/ 260 65546519 == 3P6 3D4 4D1 7 3P 3P/ 1 2D 4P/ 261 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4P/ 262 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2H/ 263 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2I/ 264 65546519 == 3P6 3D4 4D1 11 1G 1G/ 1 2D 2F/ 265 65546519 == 3P6 3D4 4D1 * 7 3P 3P/ 1 2D 2P/ 266 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2F/ 267 65546519 == 3P6 3D4 4D1 * 5 3F 3F/ 1 2D 2D/ 268 65546519 == 3P6 3D4 4D1 10 1G 1G/ 1 2D 2H/ 269 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 4F/ 270 65546519 == 3P6 3D4 4D1 * 14 1D 1D/ 1 2D 2S/ 271 65546519 == 3P6 3D4 4D1 * 3 3G 3G/ 1 2D 2G/ 272 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2D/ 273 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2S/ 274 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2P/ 275 65546519 == 3P6 3D4 4D1 4 3F 3F/ 1 2D 2P/ 276 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2F/ 277 65546519 == 3P6 3D4 4D1 * 10 1G 1G/ 1 2D 2D/ 278 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2G/ 279 65546519 == 3P6 3D4 4D1 13 1D 1D/ 1 2D 2D/ 280 65546519 == 3P6 3D4 4D1 15 1S 1S/ 1 2D 2D/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 Map to LS levels : 1 2 2 2 3 2 3 3 4 4 4 5 4 5 7 6 6 7 7 8 9 7 10 11 8 10 11 9 12 13 13 14 14 15 15 16 16 17 17 18 17 18 18 18 17 18 30 21 17 19 32 27 21 26 22 29 20 23 28 23 20 37 22 20 17 26 36 48 65 25 19 35 20 22 24 49 21 27 31 25 31 28 30 61 40 28 47 23 57 26 31 44 33 22 33 68 35 52 46 34 41 39 39 60 41 50 43 38 33 34 43 32 37 21 51 29 38 42 26 54 43 52 42 29 45 63 33 35 37 56 29 41 51 66 72 58 31 53 27 53 27 64 30 55 52 67 59 40 73 28 51 53 36 62 59 39 46 54 51 47 43 52 62 35 69 53 30 37 58 56 32 70 65 44 74 65 48 71 59 69 50 64 71 65 80 76 70 66 75 63 75 75 75 49 67 61 77 73 78 79 60 84 74 57 79 68 78 81 72 83 82 77 80 83 82 76 84 85 85 85 86 85 85 86 86 86 88 87 87 91 87 88 91 90 89 87 90 92 89 90 94 88 91 90 92 93 93 91 95 95 94 96 95 97 96 95 97 98 98 99 100 100 101 101 102 103 102 103 103 103 104 105 102 104 106 106 105 109 111 109 109 110 107 107 109 108 109 108 108 110 110 112 110 118 121 111 112 115 110 109 111 112 116 130 118 115 121 113 113 120 129 112 128 144 114 119 113 113 116 134 118 140 120 130 117 128 125 123 119 124 119 125 122 141 132 135 116 132 115 122 115 126 127 134 136 116 120 134 141 119 138 125 143 131 123 124 125 133 145 128 137 131 133 118 153 130 143 152 121 139 142 128 139 143 146 132 132 136 121 142 137 143 154 141 151 155 135 138 130 149 145 129 135 147 148 141 146 150 148 150 147 158 164 156 159 149 140 161 151 162 157 144 163 152 161 162 165 156 158 158 154 155 157 160 159 167 168 159 160 158 161 162 166 171 162 170 153 166 169 161 164 164 164 163 172 134 170 172 168 167 171 173 165 174 173 174 175 175 176 176 179 177 179 179 178 180 180 178 179 178 180 181 179 180 181 182 181 180 179 181 186 182 181 180 183 183 182 184 184 184 183 182 183 187 185 185 185 211 185 190 194 187 189 188 190 194 188 219 203 192 188 202 187 225 188 192 229 187 249 191 189 216 201 193 195 198 229 211 222 192 190 202 203 204 191 201 190 199 213 193 240 196 225 198 197 198 202 213 197 192 194 243 212 226 200 196 195 218 206 199 222 224 209 205 201 210 204 194 206 209 207 205 198 226 203 245 217 206 208 229 201 215 209 214 207 206 225 204 209 223 220 221 210 214 204 218 215 226 186 231 203 222 220 227 228 231 221 217 212 230 231 232 217 233 227 216 223 234 230 236 228 232 235 233 202 213 237 219 241 239 235 238 247 257 236 237 231 244 239 242 250 234 224 218 213 242 241 240 244 240 246 226 245 252 258 248 251 248 254 253 245 246 260 260 252 252 211 252 254 251 225 261 255 255 256 254 259 255 255 253 256 222 262 259 211 254 259 245 275 266 259 267 263 250 264 268 247 229 262 243 261 265 263 260 261 265 264 258 272 269 271 266 269 269 270 274 267 268 271 269 272 257 249 273 277 279 276 276 278 278 277 275 279 274 280 280 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#mo42-19_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 47953 45666 62308 initially 9290 8504 15900 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 28/02/04 -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- --------------------------------------------------------------------------------