ls#mo21.dat
Resolved Specific Ion Data Collections
- Ion
- Mo21+
- Temperature Range
- 8.341 eV → 9.220 x 104 eV
ADF04
- Filename
- ls#mo21.dat
- Full Path
- adf04/copmm#42/ls#mo21.dat
Download data
- Spontaneous Emission: Mo+21(i) → Mo+21(j) + hv
- Electron Impact Excitation: Mo+21(i) + e → Mo+21(j) + e
| 65536 4F13.5 | 0.0 cm-1 |
| 65536 4P5.5 | 43318.0 cm-1 |
| 65536 2H10.5 | 66254.6 cm-1 |
| 65536 2G8.5 | 71185.9 cm-1 |
| 65536 2D4.5 | 80879.0 cm-1 |
| 65536 2P2.5 | 95285.0 cm-1 |
| 65536 2F6.5 | 119536.0 cm-1 |
| 65536 2D4.5 | 192850.0 cm-1 |
| 24555546 6D14.5 | 988520.0 cm-1 |
| 24555546 6F20.5 | 1074220.0 cm-1 |
| 24555546 4H21.5 | 1103120.0 cm-1 |
| 24555546 4S1.5 | 1115420.0 cm-1 |
| 24555546 4I25.5 | 1124320.0 cm-1 |
| 24555546 4F13.5 | 1139020.0 cm-1 |
| 24555546 6P8.5 | 1142820.0 cm-1 |
| 24555546 4D9.5 | 1144320.0 cm-1 |
| 24555546 4G17.5 | 1145620.0 cm-1 |
| 24555546 4G17.5 | 1146420.0 cm-1 |
| 24555546 4H21.5 | 1148620.0 cm-1 |
| 24555546 4P5.5 | 1172820.0 cm-1 |
| 24555546 2J14.5 | 1174020.0 cm-1 |
| 24555546 2H10.5 | 1175920.0 cm-1 |
| 24555546 2G8.5 | 1177920.0 cm-1 |
| 24555546 4F13.5 | 1182120.0 cm-1 |
| 24555546 4D9.5 | 1182820.0 cm-1 |
| 24555546 2G8.5 | 1196820.0 cm-1 |
| 24555546 2P2.5 | 1210420.0 cm-1 |
| 24555546 4P5.5 | 1211720.0 cm-1 |
| 24555546 4F13.5 | 1216820.0 cm-1 |
| 24555546 4G17.5 | 1220420.0 cm-1 |
| 24555546 2D4.5 | 1239220.0 cm-1 |
| 24555546 4P5.5 | 1241320.0 cm-1 |
| 24555546 2D4.5 | 1241920.0 cm-1 |
| 24555546 4D9.5 | 1244020.0 cm-1 |
| 24555546 2S0.5 | 1245320.0 cm-1 |
| 24555546 4D9.5 | 1258220.0 cm-1 |
| 24555546 4G17.5 | 1275120.0 cm-1 |
| 24555546 2F6.5 | 1276020.0 cm-1 |
| 24555546 2I12.5 | 1280220.0 cm-1 |
| 24555546 2F6.5 | 1281920.0 cm-1 |
| 24555546 2I12.5 | 1283020.0 cm-1 |
| 24555546 4D9.5 | 1285520.0 cm-1 |
| 24555546 4F13.5 | 1287420.0 cm-1 |
| 24555546 2F6.5 | 1288320.0 cm-1 |
| 24555546 2P2.5 | 1288420.0 cm-1 |
| 24555546 2D4.5 | 1293120.0 cm-1 |
| 24555546 4F13.5 | 1312420.0 cm-1 |
| 24555546 2P2.5 | 1326320.0 cm-1 |
| 24555546 2G8.5 | 1326320.0 cm-1 |
| 24555546 2F6.5 | 1332020.0 cm-1 |
| 24555546 2H10.5 | 1333520.0 cm-1 |
| 24555546 2H10.5 | 1336520.0 cm-1 |
| 24555546 2D4.5 | 1340020.0 cm-1 |
| 24555546 2D4.5 | 1342720.0 cm-1 |
| 24555546 2G8.5 | 1344620.0 cm-1 |
| 24555546 2H10.5 | 1348920.0 cm-1 |
| 24555546 4S1.5 | 1361620.0 cm-1 |
| 24555546 2P2.5 | 1376520.0 cm-1 |
| 24555546 2D4.5 | 1399220.0 cm-1 |
| 24555546 2F6.5 | 1400520.0 cm-1 |
| 24555546 2S0.5 | 1411120.0 cm-1 |
| 24555546 4P5.5 | 1425720.0 cm-1 |
| 24555546 2G8.5 | 1427420.0 cm-1 |
| 24555546 2F6.5 | 1427920.0 cm-1 |
| 24555546 2G8.5 | 1430420.0 cm-1 |
| 24555546 2F6.5 | 1444120.0 cm-1 |
| 24555546 2F6.5 | 1446720.0 cm-1 |
| 24555546 4D9.5 | 1469320.0 cm-1 |
| 24555546 2H10.5 | 1496620.0 cm-1 |
| 24555546 2P2.5 | 1506920.0 cm-1 |
| 24555546 2F6.5 | 1507820.0 cm-1 |
| 24555546 2D4.5 | 1508020.0 cm-1 |
| 24555546 2P2.5 | 1537920.0 cm-1 |
| 24555546 2P2.5 | 1545520.0 cm-1 |
| 24555546 2G8.5 | 1548820.0 cm-1 |
| 24555546 2D4.5 | 1620220.0 cm-1 |
| 65526517 4F13.5 | 3082520.0 cm-1 |
| 65526517 2F6.5 | 3104720.0 cm-1 |
| 65526517 2D4.5 | 3124320.0 cm-1 |
| 65526517 4P5.5 | 3144420.0 cm-1 |
| 65526517 2P2.5 | 3159520.0 cm-1 |
| 65526517 2G8.5 | 3160820.0 cm-1 |
| 65526517 2S0.5 | 3260220.0 cm-1 |
| 65526518 4F13.5 | 3365820.0 cm-1 |
| 65526518 4D9.5 | 3383720.0 cm-1 |
| 65526518 4G17.5 | 3384220.0 cm-1 |
| 65526518 2S0.5 | 3389820.0 cm-1 |
| 65526518 2D4.5 | 3392720.0 cm-1 |
| 65526518 2F6.5 | 3416920.0 cm-1 |
| 65526518 2P2.5 | 3420820.0 cm-1 |
| 65526518 2G8.5 | 3423520.0 cm-1 |
| 65526518 4S1.5 | 3428020.0 cm-1 |
| 65526518 2F6.5 | 3439320.0 cm-1 |
| 65526518 4D9.5 | 3440620.0 cm-1 |
| 65526518 4P5.5 | 3446420.0 cm-1 |
| 65526518 2G8.5 | 3450620.0 cm-1 |
| 65526518 2H10.5 | 3458220.0 cm-1 |
| 65526518 2D4.5 | 3462520.0 cm-1 |
| 65526518 2D4.5 | 3472820.0 cm-1 |
| 65526518 2F6.5 | 3493620.0 cm-1 |
| 65526518 2P2.5 | 3493620.0 cm-1 |
| 65526518 2P2.5 | 3567220.0 cm-1 |
| 65526519 2F6.5 | 3797820.0 cm-1 |
| 65526519 4G17.5 | 3804820.0 cm-1 |
| 65526519 4H21.5 | 3809020.0 cm-1 |
| 65526519 4D9.5 | 3810620.0 cm-1 |
| 65526519 4P5.5 | 3820420.0 cm-1 |
| 65526519 2P2.5 | 3837220.0 cm-1 |
| 65526519 2G8.5 | 3840020.0 cm-1 |
| 65526519 2H10.5 | 3841920.0 cm-1 |
| 65526519 2S0.5 | 3854720.0 cm-1 |
| 65526519 4F13.5 | 3856220.0 cm-1 |
| 65526519 2F6.5 | 3858220.0 cm-1 |
| 65526519 2D4.5 | 3859920.0 cm-1 |
| 65526519 2P2.5 | 3873120.0 cm-1 |
| 65526519 2F6.5 | 3875420.0 cm-1 |
| 65526519 4F13.5 | 3878220.0 cm-1 |
| 65526519 2G8.5 | 3881720.0 cm-1 |
| 65526519 4D9.5 | 3884620.0 cm-1 |
| 65526519 2I12.5 | 3896020.0 cm-1 |
| 65526519 4P5.5 | 3899720.0 cm-1 |
| 65526519 2G8.5 | 3905620.0 cm-1 |
| 65526519 2H10.5 | 3919920.0 cm-1 |
| 65526519 2P2.5 | 3920520.0 cm-1 |
| 65526519 2D4.5 | 3921620.0 cm-1 |
| 65526519 2D4.5 | 3926320.0 cm-1 |
| 65526519 2D4.5 | 3939420.0 cm-1 |
| 65526519 2F6.5 | 3950920.0 cm-1 |
| 65526519 2D4.5 | 4016420.0 cm-1 |
-------------------------------------------------------------------------------- Configuration Eissner == Standard R Parentage 1 65536 == 3P6 3D3 1 4F 4F/ 2 65536 == 3P6 3D3 2 4P 4P/ 3 65536 == 3P6 3D3 3 2H 2H/ 4 65536 == 3P6 3D3 4 2G 2G/ 5 65536 == 3P6 3D3 * 7 2D 2D/ 6 65536 == 3P6 3D3 8 2P 2P/ 7 65536 == 3P6 3D3 5 2F 2F/ 8 65536 == 3P6 3D3 6 2D 2D/ 9 24555546 == 3S2 3P5 3D4 1 2P 2P/ 1 5D 6D/ 10 24555546 == 3S2 3P5 3D4 1 2P 2P/ 1 5D 6F/ 11 24555546 == 3S2 3P5 3D4 1 2P 2P/ 2 3H 4H/ 12 24555546 == 3S2 3P5 3D4 1 2P 2P/ 8 3P 4S/ 13 24555546 == 3S2 3P5 3D4 1 2P 2P/ 2 3H 4I/ 14 24555546 == 3S2 3P5 3D4 1 2P 2P/ 5 3F 4F/ 15 24555546 == 3S2 3P5 3D4 1 2P 2P/ 1 5D 6P/ 16 24555546 == 3S2 3P5 3D4 1 2P 2P/ 6 3D 4D/ 17 24555546 == 3S2 3P5 3D4 1 2P 2P/ 3 3G 4G/ 18 24555546 == 3S2 3P5 3D4 1 2P 2P/ 5 3F 4G/ 19 24555546 == 3S2 3P5 3D4 1 2P 2P/ 3 3G 4H/ 20 24555546 == 3S2 3P5 3D4 1 2P 2P/ 8 3P 4P/ 21 24555546 == 3S2 3P5 3D4 1 2P 2P/ 9 1I 2K/ 22 24555546 == 3S2 3P5 3D4 * 1 2P 2P/11 1G 2H/ 23 24555546 == 3S2 3P5 3D4 1 2P 2P/11 1G 2G/ 24 24555546 == 3S2 3P5 3D4 1 2P 2P/ 3 3G 4F/ 25 24555546 == 3S2 3P5 3D4 1 2P 2P/ 8 3P 4D/ 26 24555546 == 3S2 3P5 3D4 1 2P 2P/12 1F 2G/ 27 24555546 == 3S2 3P5 3D4 * 1 2P 2P/14 1D 2P/ 28 24555546 == 3S2 3P5 3D4 1 2P 2P/ 6 3D 4P/ 29 24555546 == 3S2 3P5 3D4 1 2P 2P/ 6 3D 4F/ 30 24555546 == 3S2 3P5 3D4 1 2P 2P/ 4 3F 4G/ 31 24555546 == 3S2 3P5 3D4 * 1 2P 2P/14 1D 2D/ 32 24555546 == 3S2 3P5 3D4 * 1 2P 2P/ 7 3P 4P/ 33 24555546 == 3S2 3P5 3D4 1 2P 2P/ 5 3F 2D/ 34 24555546 == 3S2 3P5 3D4 1 2P 2P/ 4 3F 4D/ 35 24555546 == 3S2 3P5 3D4 1 2P 2P/ 7 3P 2S/ 36 24555546 == 3S2 3P5 3D4 1 2P 2P/ 5 3F 4D/ 37 24555546 == 3S2 3P5 3D4 1 2P 2P/ 2 3H 4G/ 38 24555546 == 3S2 3P5 3D4 1 2P 2P/ 4 3F 2F/ 39 24555546 == 3S2 3P5 3D4 1 2P 2P/ 9 1I 2I/ 40 24555546 == 3S2 3P5 3D4 1 2P 2P/14 1D 2F/ 41 24555546 == 3S2 3P5 3D4 1 2P 2P/ 2 3H 2I/ 42 24555546 == 3S2 3P5 3D4 1 2P 2P/ 7 3P 4D/ 43 24555546 == 3S2 3P5 3D4 1 2P 2P/ 1 5D 4F/ 44 24555546 == 3S2 3P5 3D4 1 2P 2P/ 6 3D 2F/ 45 24555546 == 3S2 3P5 3D4 * 1 2P 2P/16 1S 2P/ 46 24555546 == 3S2 3P5 3D4 * 1 2P 2P/ 7 3P 2D/ 47 24555546 == 3S2 3P5 3D4 1 2P 2P/ 4 3F 4F/ 48 24555546 == 3S2 3P5 3D4 1 2P 2P/ 8 3P 2P/ 49 24555546 == 3S2 3P5 3D4 1 2P 2P/ 5 3F 2G/ 50 24555546 == 3S2 3P5 3D4 1 2P 2P/12 1F 2F/ 51 24555546 == 3S2 3P5 3D4 1 2P 2P/ 3 3G 2H/ 52 24555546 == 3S2 3P5 3D4 1 2P 2P/10 1G 2H/ 53 24555546 == 3S2 3P5 3D4 * 1 2P 2P/13 1D 2D/ 54 24555546 == 3S2 3P5 3D4 1 2P 2P/12 1F 2D/ 55 24555546 == 3S2 3P5 3D4 1 2P 2P/10 1G 2G/ 56 24555546 == 3S2 3P5 3D4 1 2P 2P/ 9 1I 2H/ 57 24555546 == 3S2 3P5 3D4 1 2P 2P/ 7 3P 4S/ 58 24555546 == 3S2 3P5 3D4 * 1 2P 2P/ 6 3D 2P/ 59 24555546 == 3S2 3P5 3D4 1 2P 2P/ 8 3P 2D/ 60 24555546 == 3S2 3P5 3D4 * 1 2P 2P/11 1G 2F/ 61 24555546 == 3S2 3P5 3D4 1 2P 2P/ 8 3P 2S/ 62 24555546 == 3S2 3P5 3D4 * 1 2P 2P/ 1 5D 4P/ 63 24555546 == 3S2 3P5 3D4 1 2P 2P/ 4 3F 2G/ 64 24555546 == 3S2 3P5 3D4 * 1 2P 2P/13 1D 2F/ 65 24555546 == 3S2 3P5 3D4 1 2P 2P/ 3 3G 2G/ 66 24555546 == 3S2 3P5 3D4 1 2P 2P/10 1G 2F/ 67 24555546 == 3S2 3P5 3D4 1 2P 2P/ 3 3G 2F/ 68 24555546 == 3S2 3P5 3D4 1 2P 2P/ 1 5D 4D/ 69 24555546 == 3S2 3P5 3D4 1 2P 2P/ 2 3H 2H/ 70 24555546 == 3S2 3P5 3D4 * 1 2P 2P/13 1D 2P/ 71 24555546 == 3S2 3P5 3D4 1 2P 2P/ 5 3F 2F/ 72 24555546 == 3S2 3P5 3D4 1 2P 2P/ 6 3D 2D/ 73 24555546 == 3S2 3P5 3D4 1 2P 2P/15 1S 2P/ 74 24555546 == 3S2 3P5 3D4 1 2P 2P/ 7 3P 2P/ 75 24555546 == 3S2 3P5 3D4 1 2P 2P/ 2 3H 2G/ 76 24555546 == 3S2 3P5 3D4 1 2P 2P/ 4 3F 2D/ 77 65526517 == 3P6 3D2 4S1 1 3F 3F/ 1 2S 4F/ 78 65526517 == 3P6 3D2 4S1 1 3F 3F/ 1 2S 2F/ 79 65526517 == 3P6 3D2 4S1 4 1D 1D/ 1 2S 2D/ 80 65526517 == 3P6 3D2 4S1 2 3P 3P/ 1 2S 4P/ 81 65526517 == 3P6 3D2 4S1 2 3P 3P/ 1 2S 2P/ 82 65526517 == 3P6 3D2 4S1 3 1G 1G/ 1 2S 2G/ 83 65526517 == 3P6 3D2 4S1 5 1S 1S/ 1 2S 2S/ 84 65526518 == 3P6 3D2 4P1 1 3F 3F/ 1 2P 4F/ 85 65526518 == 3P6 3D2 4P1 1 3F 3F/ 1 2P 4D/ 86 65526518 == 3P6 3D2 4P1 1 3F 3F/ 1 2P 4G/ 87 65526518 == 3P6 3D2 4P1 2 3P 3P/ 1 2P 2S/ 88 65526518 == 3P6 3D2 4P1 * 1 3F 3F/ 1 2P 2D/ 89 65526518 == 3P6 3D2 4P1 1 3F 3F/ 1 2P 2F/ 90 65526518 == 3P6 3D2 4P1 4 1D 1D/ 1 2P 2P/ 91 65526518 == 3P6 3D2 4P1 1 3F 3F/ 1 2P 2G/ 92 65526518 == 3P6 3D2 4P1 2 3P 3P/ 1 2P 4S/ 93 65526518 == 3P6 3D2 4P1 4 1D 1D/ 1 2P 2F/ 94 65526518 == 3P6 3D2 4P1 2 3P 3P/ 1 2P 4D/ 95 65526518 == 3P6 3D2 4P1 2 3P 3P/ 1 2P 4P/ 96 65526518 == 3P6 3D2 4P1 3 1G 1G/ 1 2P 2G/ 97 65526518 == 3P6 3D2 4P1 3 1G 1G/ 1 2P 2H/ 98 65526518 == 3P6 3D2 4P1 2 3P 3P/ 1 2P 2D/ 99 65526518 == 3P6 3D2 4P1 4 1D 1D/ 1 2P 2D/ 100 65526518 == 3P6 3D2 4P1 3 1G 1G/ 1 2P 2F/ 101 65526518 == 3P6 3D2 4P1 2 3P 3P/ 1 2P 2P/ 102 65526518 == 3P6 3D2 4P1 5 1S 1S/ 1 2P 2P/ 103 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 2F/ 104 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 4G/ 105 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 4H/ 106 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 4D/ 107 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 4P/ 108 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 2P/ 109 65526519 == 3P6 3D2 4D1 * 1 3F 3F/ 1 2D 2G/ 110 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 2H/ 111 65526519 == 3P6 3D2 4D1 * 4 1D 1D/ 1 2D 2S/ 112 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 4F/ 113 65526519 == 3P6 3D2 4D1 * 4 1D 1D/ 1 2D 2F/ 114 65526519 == 3P6 3D2 4D1 1 3F 3F/ 1 2D 2D/ 115 65526519 == 3P6 3D2 4D1 4 1D 1D/ 1 2D 2P/ 116 65526519 == 3P6 3D2 4D1 2 3P 3P/ 1 2D 2F/ 117 65526519 == 3P6 3D2 4D1 2 3P 3P/ 1 2D 4F/ 118 65526519 == 3P6 3D2 4D1 3 1G 1G/ 1 2D 2G/ 119 65526519 == 3P6 3D2 4D1 2 3P 3P/ 1 2D 4D/ 120 65526519 == 3P6 3D2 4D1 3 1G 1G/ 1 2D 2I/ 121 65526519 == 3P6 3D2 4D1 2 3P 3P/ 1 2D 4P/ 122 65526519 == 3P6 3D2 4D1 4 1D 1D/ 1 2D 2G/ 123 65526519 == 3P6 3D2 4D1 3 1G 1G/ 1 2D 2H/ 124 65526519 == 3P6 3D2 4D1 2 3P 3P/ 1 2D 2P/ 125 65526519 == 3P6 3D2 4D1 3 1G 1G/ 1 2D 2D/ 126 65526519 == 3P6 3D2 4D1 4 1D 1D/ 1 2D 2D/ 127 65526519 == 3P6 3D2 4D1 2 3P 3P/ 1 2D 2D/ 128 65526519 == 3P6 3D2 4D1 3 1G 1G/ 1 2D 2F/ 129 65526519 == 3P6 3D2 4D1 5 1S 1S/ 1 2D 2D/ (R) - Levels (or levels within a term) have been reassigned from their principal component. -------------------------------------------------------------------------------- IC Level list : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 Map to LS levels : 1 1 1 1 2 2 4 3 2 5 6 3 4 5 6 7 7 8 8 9 9 9 9 9 10 15 25 43 10 10 36 16 24 17 24 36 14 11 11 13 20 18 16 11 14 13 23 18 10 12 19 25 17 13 14 11 28 10 20 33 18 19 19 59 38 10 17 28 21 42 30 22 15 46 29 24 26 37 15 45 27 22 32 34 21 13 29 31 40 34 19 44 14 39 30 54 30 58 27 26 34 35 60 41 17 32 56 29 47 25 55 50 48 52 23 43 28 37 66 37 34 16 49 31 30 24 18 47 70 41 20 37 29 53 36 47 25 51 16 51 39 42 43 44 49 36 57 67 53 47 64 50 43 32 40 33 42 42 62 65 61 62 68 52 63 54 63 56 38 48 55 65 58 68 68 46 68 64 69 73 69 72 45 71 62 71 72 60 74 75 74 75 67 66 59 70 76 73 76 77 77 77 78 77 78 80 79 79 80 81 82 80 82 81 83 86 84 86 84 85 88 85 84 84 85 94 87 85 94 90 86 91 89 88 86 89 96 97 93 92 91 95 94 95 93 95 99 98 98 90 96 94 101 97 99 100 101 100 102 102 104 105 106 103 104 105 106 107 103 104 106 105 107 108 106 104 110 112 107 114 105 109 112 109 108 115 113 112 111 110 117 116 118 113 117 119 122 119 114 117 119 112 124 121 116 120 127 117 125 121 119 120 118 121 123 126 115 123 126 122 124 128 128 125 127 129 129 -------------------------------------------------------------------------------- Generated from Cowan Atomic Structure Program From IFG file : ./ifg#mo42-21_adf34.dat Options in effect Coupling Avalue numtemps Lweight Isonuclear Comment Level LS YES 14 NO YES 2 Cowan code options ------------------ Cowan plane wave Born method Scale factors 85 95 85 85 50 Parity 1 Parity 2 Allowed 3873 18122 11409 initially 809 3479 3054 reduced Note: The Born method does NOT calculate spin changing transitions correctly. You should supplement for important transitions of this type. -------------------------------------------------------------------------------- Code : ADAS801 Producer : Martin O'Mullane Date : 28/02/04 -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- --------------------------------------------------------------------------------